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ABSTRACT

Colloidal Superionics

Yange Lin （林雁戈）

This dissertation focuses on the study of the superionic state in multicomponent sys-

tems, where the smaller component exhibits delocalization and mobility while still main-

taining system compactness through component attractions. Superionic behavior is widely

observed in various systems and plays a crucial role in ceramic superionic conductors,

which offer high ion conductivities comparable to liquid electrolytes while ensuring en-

hanced safety. Consequently, comprehending the superionic state and effectively control-

ling the superionic transition hold both scientific and practical significance, particularly

in the development of solid-state batteries. Recent advancements have revealed superi-

onic behaviors in nanoparticle assemblies with asymmetric size, thereby expanding the

scope of nanoparticle engineering and proposing colloidal assemblies as potential models

for investigating the superionic state. This dissertation employs computer simulations

to explore the superionic state in a binary colloidal crystal formed by highly asymmetric

components in terms of size and charge. The research investigates the structural and

dynamic properties of the crystal concerning temperature variations, changes in solution
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concentration, and the application of an external electric field. These preliminary efforts

deepen our understanding of superionics and establish a theoretical framework for the

improved design of superionic conductors.
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CHAPTER 1

Introduction to superionic states

1.1. Liquid-state batteries

Batteries have become an integral part of our daily lives, powering our smartphones,

computers, advanced energy storage technologies, and electric vehicles. Currently, Lithium-

ion batteries are the most commonly used commercial batteries due to their high energy

density [1]. The conducting media that facilitate the movement of ions between elec-

trodes are typically organic liquid electrolytes or gel polymer electrolytes. Both of these

media share similar conductive properties, with gel polymer electrolytes functioning by

containing liquid electrolytes within polymer networks [2]. Liquid electrolytes offer sev-

eral advantages, including high ion conductivity at room temperature and the ability to

form solid electrolyte interfaces (SEI) on electrode surfaces. These interfaces enable the

transport of Li+ ions while blocking electrons to prevent further electrolyte decomposition,

thereby maintaining electrochemical reactions and resulting in low interface resistivities

[3, 4].

Liquid electrolytes, despite their benefits, have multiple drawbacks. One major con-

cern is the potential for leakage, as these electrolytes are often composed of toxic and

volatile organic solvents. Additionally, the use of high voltage is limited in liquid elec-

trolytes due to the risk of oxidation-reduction reactions. Most liquid-state batteries have

an electrochemical window that cannot exceed 4.5V [5], which hinders improvements to
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energy density. The operating temperature range of liquid-state batteries is also narrow,

as low temperatures cause the electrolytes to become more viscous or even transition to

solids, leading to a significant decrease in ion conductivities [1]. For gel electrolytes, the

glass transition temperature of the polymers sets a lower temperature limit. At high

temperatures, the vapor of organic solvents can harm battery seals. The thermal stability

of lithium salts in the solvents is also a concern. For example, LiPF6 [6], a commonly

used salt, tends to decompose into LiF and PF5 at high temperatures, which in turn can

induce the decomposition of the solvent. These chemical reactions generate heat, which

can accelerate further reactions and even cause flammable organic solvents to ignite, re-

sulting in major incidents. Thus, there is a critical need to develop highly efficient and

safer batteries.

1.2. Atomic Superionics and superionic state

Solid-state batteries are the most promising candidates for next-generation batter-

ies. By replacing liquid electrolytes with solid ones, solid-state batteries can address

the aforementioned issues and significantly enhance device safety. First and foremost,

solid electrolytes, especially inorganic ones, are non-volatile and generally non-flammable.

Therefore, the risk of ignition is substantially minimized. Secondly, solid-state batteries

can operate in a wider range of temperatures, particularly high temperatures, due to

the exceptional thermal stability of solids [7]. The stability of solids also permits the

electrolytes to tolerate a broader range of operating voltage, which improves the energy

density of the battery [8]. Thirdly, solid electrolytes are more chemically inert compared

to their liquid counterparts, allowing them to be utilized in various environments. It also
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implies that an inert protective atmosphere is not required during the synthesis of solid

electrolytes [9], which can potentially lower the production cost of solid-state batteries.

However, the development of solid-state batteries is faced with significant challenges.

One of the challenges is the lack of an SEI, as well as the material mismatch at the interface

between the electrodes and solid electrolytes, which could hinder ion transport and lead

to additional resistances [8]. On the other hand, the ion conductivities of traditional

solid-state electrolytes are much lower than those of liquid electrolytes, mainly because

ions are rigidly held in fixed positions by neighboring atoms or ions, which restricts their

mobility.

A potential solution to this problem is the use of a specific class of solid-state mate-

rials with high ionic conductivities comparable to molten salts [10], known as superionic

conductors or superionics. Superionic conductors typically consist of highly asymmetric

components in size. Their high conductivities are associated with sublattice melting of

the weakly bonded smaller component in ionic solids. Canonical examples of superionic

materials include AgI and PbF2 [11]. Below 420K, AgI exists in a stable wurtzite structure

where larger ions, I–, form a host lattice, and smaller ions, Ag+, occupy fixed interstitial

sites. Above 420K, the sublattice of Ag+ melts, allowing them to diffuse rapidly within

the lattice [12]. Additionally, superionic conductors for lithium and sodium ions are of

great interest and significance. Due to their small sizes, Li+ and Na+ are readily detached

from lattice sites and can diffuse through lattice gaps. Thus, lithium-ion and sodium-

ion superionic conductors can exhibit liquid-like ionic conductivities at room temperature

(such as Li10GeP2S12 [13] discovered in 2011), and they have low activation energies for
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use over a wide range of operating temperatures [14, 15, 16, 17, 18], making them the

core component of solid-state batteries.

Solids composed of delocalized small components are referred to as having a superionic

state. This state has been observed in ice by researchers, as evidenced by various studies

[19, 20, 21, 22, 23]. At extremely high pressure (∼300GPa) and temperatures (∼1000K),

covalent bonds between hydrogen and oxygen atoms break, causing hydrogen atoms to

become dispersed throughout the entire structure instead of being centered between oxy-

gen atoms. Similar transitions to superionic states have also been observed in ammonia

[23]. Interestingly, superionic ice and ammonia have been detected in the rock layers of

Uranus and Neptune, and are believed to be the source of these planets’ magnetic fields

[23]. Researchers are exploring the potential for superionic polymers, which are safer al-

ternatives for use as electrolytes in solid-state batteries [24, 25]. By stiffening polymers,

ion motion becomes decoupled from polymer relaxation and rearrangement, resulting in

faster ion transport. It is worth noting that superionic states are not restricted to inor-

ganic solid electrolytes, but can also exist more broadly. It is essential to comprehend

this universal phenomenon.

1.3. Phase transitions to superionic states

When salts melt, their ionic conductivities generally experience a sharp increase, rising

several orders of magnitude to values similar to those of liquids [10]. In contrast, the ionic

conductivities of superionic solid electrolytes or materials show gradual increases or one

or more sharp increases as they heat up while remaining solid. This indicates a series
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of phase transitions, either continuous or discontinuous, from the ionic to the superionic

state.

The gradual or sequential ”sublattice melting” of particles on a specific set of lattice

positions is believed to cause this series of phase transitions, where some particles become

mobile and almost liquid-like, while the rest remain in their normal positions. Sublattice

melting is thought to be responsible for the high ion conductivities observed in the superi-

onic phase [10]. Researchers have investigated the prerequisites for sublattice melting and

the superionic phase, with sufficient lattice defects and interstitial sites being identified

as key factors [26, 27, 28]. Interstitial sites create space for the molten component and

reduce the activation energy of the ion transport path from one lattice site to a neighbor-

ing vacant site [29, 14]. Therefore, improving the density of lattice defects while retaining

enough charge carriers is crucial but challenging. Other factors, such as distortable frame-

works of immobile ions and linear transport channels, may also contribute to reducing

activation energy in transport although are not necessary [14].

To understand the conditions under which superionic materials melt gradually, in

stages, or at a certain point, it is important to identify the different types of transitions

to superionic phases. Researchers have classified three types of transitions [30]. Type I

is a first-order transition where the ordered sublattice of mobile ions melts at a specific

transition temperature, Tc, resulting in a sharp and discontinuous increase in ion con-

ductivity. This transition is also known as an insulator-metal transition (IMT) [10]. In

most Type I superionic conductors, the transition is accompanied by a rearrangement

of the immobile ion lattice, typically from a low-symmetry structure to a high-symmetry

structure [30]. This rearrangement is necessary to accommodate the disordering of mobile
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ions and the resulting increase in symmetry in the sublattice. For example, in Ag2S, the

S2– lattice changes from monoclinic to body-centered cubic (BCC) or face-centered cubic

(FCC) at Tc, and the SO 2–
4 lattice in Li2SO4 changes from monoclinic to FCC. There are

a few exceptions to this, such as CuI, whose immobile ion lattice (I–) remains FCC before

and after the superionic transition. However, in general, lattice variations are common

upon first-order sublattice melting and are worth considering.

Type II transitions are characterized by a continuous increase in ion conductivity as

the material is heated, but exhibit peaks or anomalies in the specific heat [31]. The

immobile ion lattice remains unchanged and is typically composed of FCC structures

[30]. In an FCC lattice, the mobile ions tend to occupy the tetrahedral voids, which are

energetically favorable due to the maximization of the electrostatic attraction. However,

the tetrahedral voids in the FCC structure are separated by the octahedral voids, making it

energetically unfavorable for mobile ions to diffuse through the lattice. As the temperature

increases, the mobile ions gradually move to the octahedral voids, following the Boltzmann

distribution, leading to a gradual increase in ion conductivity that does not rely on lattice

variation. Type III transitions are similar to Type II, but lack any peak or anomaly

in the specific heat [30]. They only occur in non-stoichiometric materials with complex

crystal structures, where mixed phases could be the cause of the continuous nature of the

transition.

The preceding discourse highlights the diverse factors that influence the transitions

to superionic states. The nature of the ion-ion interactions, the lattice structure, and

the stoichiometry all impact these transitions in unique ways. It is erroneous to view

superionic materials as solely solids with numerous vacancies or liquids moving within a
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rigid framework. The interactions between the mobile and stationary ions are crucial,

disrupting the customary phonon spectrum of the solid and attenuating the robust ion-

ion repulsion. There is still much to learn about these materials, and a comprehensive

understanding remains elusive.

In summary, to further the development of batteries and energy storage technologies,

it is essential to comprehend charge transport in superionic materials for the design and

synthesis of new superionic conductors. Additionally, controlling transitions to superionic

states is important due to the wide range of superionic behaviors and states. Achieving

a comprehensive understanding of superionic materials and their physical nature necessi-

tates good models for both experimental and theoretical studies, where colloidal assem-

blies could be a perfect fit.

This dissertation will focus on studies of superionic behaviors in charged colloidal

crystals and is divided into three chapters (Chap. 2, 3, and 4). In Chap. 2, we explore the

discovery of superionic states in an isolated binary colloidal crystal with highly asymmetric

components in size and charge. In Chap. 3, we examine the ionic to superionic transition

in a binary charged colloidal crystal in equilibrium with a solution of colloidal particles. In

Chap. 4, we investigate the structural transitions and charge transport in a binary charged

colloidal crystal under an external electric field. A brief summary of each chapter’s content

and organization is presented below.

• Chapter 2: We explore the discovery of superionic states in an isolated binary

colloidal crystal composed of highly asymmetric components in size and charge.

We observe sublattice melting in colloidal crystals of oppositely charged particles
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immersed in salt solutions. As the temperature increases, the small particles,

akin to mobile ions in superionic compounds, undergo melting and form a supe-

rionic phase. Unlike superionic phases in atomic systems, these delocalized small

particles in a crystal of large oppositely charged particles result in crystals with

non-electroneutral stoichiometric ratios. This leads to structures exhibiting mul-

tiple domains of ionic crystals in percolated superionic phases with adjustable

stoichiometries.

• Chapter 3: We simulate a charged colloidal crystal in equilibrium with a so-

lution containing small colloidal particles and counterions using Coulomb inter-

action between the finite-size components. We find ionic to metallic first order

transitions by increasing either the temperature or the concentration of small

particles in the solution. The transition is accompanied by a lattice expansion

and increased absorption of small particles into the crystal. We compute the

free energies of the ionic and metallic states using the Madelung constant and

Wigner-Seitz cell approaches, respectively, combined with the quasi-harmonic

lattice model. The calculation reproduces the simulated transition and reveals

that the enthalpic gain is more pronounced than the entropic gain in the tran-

sition from ionic to metallic bonding when materials are exchanged with the

solution.

• Chapter 4: We use coarse-grained molecular simulations with underdamped

Langevin dynamics to explore how a binary charged colloidal crystal reacts to an

external electric field. As the field strength increases, we find transitions from

insulator (ionic state), to superionic (conductive state), to laning, to complete
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melting (liquid state). In the superionic state, the resistivity decreases with in-

creasing temperature, which is contrary to metals, yet the increment decreases as

the electric field becomes stronger. Additionally, we verify that the dissipation of

the system and the fluctuation of charge currents obey recently developed thermo-

dynamic uncertainty relation. Our results describe charge transport mechanisms

in colloidal superionic conductors.
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CHAPTER 2

Sublattice Melting in Charged Colloidal Crystals∗

2.1. Introduction

Colloidal particles, which range in size from several nanometers to a few microns,

are small solid particles that can be suspended in fluids via thermal motion and buoy-

ancy. Common materials for colloidal suspensions include low-solubility compounds like

Al(OH)3 and Fe(OH)3, which can form small clusters within the nanometer scale when

they precipitate from water at an uncontrolled rate. However, polymers are more favorable

materials for producing colloidal particles. One of the most well-studied systems is that

of polymethylmethacrylate (PMMA) nanoparticles, which can be synthesized with high

precision. Colloidal particles made of PMMA can have a size polydispersity of less than

3% [33], making them ideal for a wide range of applications, from paints and inks to crit-

ical diagnostic tests [33]. Furthermore, colloidal particles and their assemblies can serve

as perfect models to study various structures and behaviors, especially those in atomic

and molecular systems that are difficult to characterize and track [34, 35, 36, 37, 38, 39].

By scaling up the particles from the atomic scale to the nanoscale while maintaining

their size ratio, it is possible to reproduce the same or similar structures and behaviors

in colloidal systems, and even synthesize novel structures without atomic counterparts.

∗This chapter is primarily based on the published work [32] of Yange Lin and Monica Olvera de la Cruz,
Sublattice melting in binary superionic colloidal crystals, Phys. Rev. E 101.3 (2020): 032603,
with modified notations and extended details to comply with the structure of this work.
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Techniques such as laser-scanning confocal fluorescence microscopy [33] enable visualiza-

tion of each particle and tracking of its motion in both space and time, leading to a deeper

understanding at the particle level.

In addition to the precise control of particle size, colloidal systems exhibit diverse

interparticle interactions that are easier to tune than those in atomic or molecular sys-

tems. This makes colloids an interesting model system for fundamental condensed matter

physics. In addition to hard-core and van der Waals interactions, electrostatics is one of

the most common interactions in colloids. Due to their large specific surface area, col-

loidal particles tend to adsorb co-ions and become charged. For instance, metal oxides and

metal hydroxides such as Al(OH)3 and Fe(OH)3 adsorb cations, while metal sulfides such

as Ag2S adsorb anions. By coating PMMA with poly-12-hydroxystearic acid, the amount

and sign of charge on each nanoparticle can be precisely tuned by adding tetrabutylam-

monium bromide salt [40, 41]. Like-charge repulsions stabilize the colloidal suspension

and prevent particle aggregation. Dissociation of surface groups of nanoparticles, such as

amino acids, also charges the particles [42]. As the dissociation is often pH-dependent, it

provides another means to control particle charge by adjusting the pH of the solution.

Under appropriate conditions, two types of nanoparticles with opposite charges can

form complex superstructures through colloidal assembly [41, 42, 43, 44]. The formation of

these structures can be driven by various interactions, including depletion forces resulting

from pure hard-core repulsions of NPs and smaller particles in the solution such as ions

[45, 46, 47, 48]. Interestingly, even in the absence of smaller particles, hard-core NPs can

still crystallize via entropy-driven processes [49, 50, 51]. Magnetic colloidal particles can

assemble through dipole-dipole interactions that can be manipulated by external magnetic
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fields, leading to fascinating time-varying phenomena [52, 53, 54, 55]. Additionally, by

grafting DNA sequences onto the surface of different NPs, particles with complementary

sequences can co-assemble while repelling those with unmatched sequences, allowing for

the synthesis of various NP superlattices and hierarchical structures [56, 57, 58, 59, 60].

Unlike chemical compounds in atomic systems, colloidal assemblies do not face con-

straints from the number, symmetry, or energy of orbitals. This property greatly expands

the possible crystal structures that can contain multiple types of NPs, particularly binary

colloidal crystals. Over the past few decades, several types of binary colloidal crystals

with different component ratios have been studied, such as AB [61], AB2 [53], and AB8

[41]. Experimental and computational studies have shown that the size and charge ratios

of the two components, as well as the ionic strength of the solution, are critical factors in

the assembly process of binary superlattices [41, 45, 43].

The majority of research on binary charged colloidal crystals has focused on classical

atomic ionic compounds with fixed particle positions. However, in 2019, Girard et al.

discovered colloidal crystals that resemble atomic metallic crystals. These crystals were

formed through the co-assembly of highly size-asymmetric DNA-functionalized nanoparti-

cles (NPs) with complementary end nucleotide sequences [62]. By decreasing the number

of grafted DNA chains on the smaller NPs and/or increasing the temperature, the strength

of interactions between the two components is reduced. This causes the smaller NPs to

undergo a transition from localized at the interstitial sites to delocalized and roaming the

crystal while still preserving the integrity of the lattice formed by the larger NPs, sim-

ilar to the behavior of electrons in metals. Molecular dynamics (MD) simulations have
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demonstrated this bonding behavior in co-assemblies of asymmetric NPs, even in the ab-

sence of electrostatic interactions [62, 63, 64]. The transition from localized to delocalized

small components, known as metallization, has been predicted to exist in cubic [63] and

various non-cubic functionalized colloidal crystal lattices [64]. Some of these lattices have

been successfully obtained experimentally [65]. Additionally, metallization behavior has

been observed in two-dimensional lattices [66].

In the following sections of this chapter, we investigate whether metallization behavior

exists in charged colloidal systems by incorporating electrostatic interactions. This is a

critical step in exploring the potential to assemble real superionic conductors using oppo-

sitely charged colloids in salt solutions. In charged colloidal crystals, the charge neutrality

restriction present in traditional ionic and superionic atomic crystals can be removed when

small ions screen the charge [41, 42]. Additionally, the range of the interaction potential

can be adjusted by controlling the salt concentration in regimes where the Debye-Hückel

approximation is valid [42, 43]. As such, these colloidal systems have the potential to

expand the scope of colloidal science and superionic materials.

We hypothesize that the significant size difference between the colloidal components

is crucial for observing sublattice melting in colloidal systems. This is in line with the

prerequisites for atomic superionics discussed in Chapter 1. Therefore, we focus on binary

oppositely charged colloidal crystals with a substantial difference in size and charge. We

study the thermal expansion of the superlattice with different stoichiometries and find

a sharp transition from ionic to superionic phases under specific stoichiometries. This

transition is characterized by a discontinuous jump in lattice spacing as temperature

increases and by the double-well shape of the free energy landscape observed through
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MD simulations. We also observe regions of coexistence between different phases, such

as ionic-like phases of varying stoichiometries at low temperatures or ionic-like phases

coexisting with superionic-like phases at intermediate temperatures. We analyze these

regions of coexistence by calculating the time-averaged density of small particles [67]

and explain why the attractions provided by the small particles in superionic-like phases

are not depletion-type interactions. Finally, we discuss the potential realization of our

observations in experiments and their potential applications.

2.2. Methods

2.2.1. Coarse-Grained Molecular Simulation Model

In our model of size-asymmetric binary colloidal crystals, we adopt a coarse-grained ap-

proach, where both large (A) and small (B) NPs are treated as isotropic, monodispersed,

charged spheres. The interaction between particles of the same species is purely repul-

sive, preventing the spontaneous formation of crystal structures from pure As or Bs.

The implicit presence of ions in the system is accounted for by applying the Debye-

Huckel approximation, which describes pair potentials between charged nanoparticles at

salt concentrations up to approximately 300mM of NaCl [47]. In our model, particles

interact through the Weeks-Chandler-Andersen (WCA) potential, which accounts for ex-

cluded volume effects, and the Debye-Hückel (DH) potential, which takes into account

the screened Coulombic interactions:

(2.1) U(r) = UWCA(r) + UDH(r),
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where

(2.2) UWCA(rij) =


4ε

[(σij
rij

)12
−
(σij
rij

)6]
+ ε, rij < rcut,

0, rij > rcut,

(2.3) UDH(rij) =
q∗i q

∗
j e

−κrij

rij/σ
ε.

The energy term of the WCA potential, ε, is chosen to be the characteristic energy

parameter in our simulations. The cutoff distance of the WCA potential rijcutWCA = 21/6σij,

where σij is pair-dependent and is calculated from the Lorentz-Berthelot mixing rules

σij = Ri + Rj. Here the radii of the two species were fixed at RA = 5σ and RB = 1σ,

where σ is the characteristic distance parameter. For the Debey-Hückel potential, κ is the

screening strength, and q∗i and q∗j are effective reduced charges. For colloidal particles,

an extended form of q∗i commonly used in simulations includes the hard-core via the

Derjaguin-Landau-Verwey-Overbeek (DLVO) potential which gives q∗i = qie
κRi/(1+ κRi)

[41, 44], yet it is accurate only for dilute systems. In concentrated colloidal suspensions,

such as in the crystals studied here, q∗ has a more complicated form [68]. Thus, without

losing generality we directly use q∗ as simulation parameters that are independent of κ

and the compactness of the system. We keep the exponentially-decaying part with the

distance between particles because it is preserved in nonlinear models even when water

effects and ions are explicitly included [47]. The cutoff distance of the Debey-Huckel

potential rijcutDH = 3κ−1 + σij.



41

From the energy unit ε and distance unit σ, the reduced quantities can be defined,

including the reduced temperature T ∗ = kBT/ε, the reduced pressure P ∗ = Pσ3/ε, the

reduced time τ ∗ = t
√
ε/(mσ2), and the reduced charges q∗ = q/

√
4πϵ0ϵrσε. Here, e is the

elementary charge; ϵ0 and ϵr are the vacuum permittivity and the relative permittivity of

the medium, respectively. In the rest of the paper the prefix reduced will be omitted and

these quantities are in terms of the reduced quantities.

2.2.2. zero pressure NPT simulations

All the MD simulations are done in the LAMMPS software package [69]. We initialize

the system by setting large particles in perfect FCC crystal positions in a periodic cubic

box, with small particles randomly placed throughout the lattice while avoiding strong

overlap. The number of crystal unit cells in each direction is 6 (We have examined larger

systems and found that the system size effect is negligible. See Table 2.1 and Figure 2.8 in

the Appendix section of this chapter for more details). The system is first thermalized in

the canonical (NVT) ensemble with a Langevin thermostat, then is slowly compressed to

a close-packing state by reducing the simulation box size. After the system is equilibrated

for 2 × 103τ ∗ (106 timesteps), it is switched to the isobaric–isothermal (NPT) ensemble

with a large enough external pressure to keep the system compressed and run for another

2 × 103τ ∗. The pressure is subsequently relaxed to exactly 0 and the system is further

equilibrated for 2×104τ ∗ (107 timesteps). To simplify the simulations, the cubic symmetry

of the simulation box is maintained during the run.

Simulating a crystal under zero pressure is crucial to ensure that the assembly forms

purely due to the attraction between the large and small particles, and not because of any
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external compression. However, zero-pressure NPT simulations must be conducted with

caution [70]. In principle, any solid will eventually vaporize under zero pressure, leading

to the absence of stable crystals in equilibrium. This means that the crystal structures

obtained in simulations are metastable and may collapse in the long run. Nevertheless,

in terms of free energy, the equilibrium volume (or lattice spacing) of the crystal satisfies

the equation:

(2.4) 0 =

(
∂F

∂V

)∣∣∣∣
T

= −p.

This indicates that the metastable structures, in fact, give the accurate equilibrium volume

(or lattice spacing), as confirmed by the comparison of NPT simulation results and NVT

simulation results in the latter section. Therefore, zero-pressure NPT simulations provide

a fast method of acquiring the equilibrium structures, but should not be run for an

extended period.

In this work, we focus on the FCC structure, which is one of the closest packed struc-

tures commonly observed in charged colloidal assemblies [41, 42, 43, 44]. These structures

maximize the long-range electrostatic interactions. Removing the symmetry constraint in

simulations may allow the crystal to transform from the FCC to other non-cubic or cubic

structures, such as the BCC structure, more easily. A following study on metallization in

size-asymmetric DNA-functionalized colloidal crystals observed deformation of the lattice

of large particles (the immobile component) due to short-range interactions [64].

In terms of conductive behaviors, the BCC structure is better than the FCC structure.

The BCC structure contains tetrahedra that share faces with one another, and the largest

voids are tetrahedra. Thus, small particles can move among equivalent sites by passing
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through the tetrahedral faces. In contrast, the FCC structure contains tetrahedra that

share corners with one another and share faces with octahedra, not with other tetrahedra.

Similarly, the octahedra share faces only with tetrahedra. If small particles pass through

the faces of the polyhedra, the conduction path consists of alternating tetrahedral and

octahedral sites. This difference in lattice often results in FCC structures having higher

activation energies and smaller diffusion coefficients than BCC structures [30]. Neverthe-

less, this work focuses on the variation of the small particle positions and does not consider

the lattice deformation of the large particles during transitions, which is an interesting

topic but is outside the scope of this study.

2.3. Results and Discussions

2.3.1. First-Order Sublattice Melting

We first investigate the relationship between the strength of the attraction between the two

components (A-B attraction) and the crystal structure of colloidal particles. Specifically,

reducing the A-B attraction leads to an increase in potential energy wells and a decrease

in the activation energy of transport, which can cause the delocalization of the smaller

component. Previous research [62] supports this idea.

Our results show that under moderate salt conditions, reducing the A-B attraction

can cause colloidal crystals to transition from ionic phases to superionic phases (Figure

2.1). To illustrate this, we examine the equilibrium size of the simulation box, which is

equivalent to six lattice constants. We vary the reduced charge of the small particles,

denoted as q∗B, while keeping the temperature at T ∗ = 0.3, and the stoichiometric ratio

of small (B) and large (A) particles, denoted as NB : NA, at 8. Additionally, we set the
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charge of the large particles to q∗A = −247, and the screening strength to κσ = 0.7. † We

find that when q∗B = +11, the small particles aggregate into an ionic crystal, where they

are fixed at interstitial positions and form a regular sublattice. As we decrease q∗B, the A-

B attraction weakens, and the equilibrium box size gradually increases. When q∗B = +5.5

and +4, the attraction strength is no longer sufficient to localize the small particles at

specific positions, but it can still keep the crystal stable. Therefore, the sublattice melts,

and the system transitions to a superionic-like structure. Further decreasing q∗B induces

the melting of the whole FCC crystal.

†We note that when setting σ = 1 nm, the screening strength we use corresponds to a salt concentration
of approximately 44mM NaCl. This concentration falls within the concentration range where the Debye-
Huckel approximation is applicable. Moreover, the sizes of the large and small nanoparticles are 10nm
and 2nm, respectively, which are reasonable values in experiments.
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Figure 2.1. Simulation box size under different reduced charges of the small
particles (q∗B) at T ∗ = 0.3, for NB/NA = 8, q∗A = −247 at κσ = 0.7. Two
distinct phases are observed, superionic-like and ionic-like; the snapshots
are from the [001] direction of the FCC crystal.

Maintaining a medium salt concentration is critical for the stability of colloidal crys-

tals, particularly when the colloidal particles themselves are not charge-neutral. A high

salt concentration (large κ) weakens the A-B attraction by screening the charges, which

causes the crystal to melt due to insufficient cohesive energy. Conversely, reducing the

salt concentration increases the A-B attraction, which enhances the repulsion between

large particles, resulting in a gas state where large particles stay far apart, surrounded
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by small particles. As the salt concentration approaches 0, charge neutrality becomes

increasingly important and eventually becomes a requirement for stability, as discussed

in Chap. 3. The melting behavior of an unstable crystal at low pressure is shown in

Figure 2.9 in the Appendix section of this chapter.

Increasing the temperature (T ∗) above 0.3 in the system with q∗A = −247, q∗B = +11,

and κσ = 0.7 causes the sublattice to melt. We also observe a strong first-order ionic-

to-superionic transition at NB/NA = 8. If we convert q∗i to bare charges qi using the

DLVO approximation for these parameters, we get qA ≈ −34 and qB ≈ +9, indicating

that the crystal is not charge-neutral. In contrast, the nearly charge-neutral crystal with

q∗A = −247, q∗B = +11 (qA ≈ −34 and qB ≈ +4) also exhibits sublattice melting, as shown

in Figure 2.1. This comparison demonstrates that sublattice melting can occur without

charge neutrality if sufficient screening exists. We determine the sublattice melting tem-

perature by analyzing changes in the equilibrated simulation box size. Heating curves of

the box size for different number ratios NB/NA (Figure 2.2) show that the lattice expands

as the temperature increases, but for NB/NA = 8, the expansion is discontinuous at a

specific temperature (T ∗ = 0.68), indicating a first-order phase transition for sublattice

melting. At NB/NA = 10, a similar but weaker discontinuous lattice expansion occurred.

For NB/NA = 9, the lattice has two distinct discontinuous expansions (at T ∗ = 0.3 and

T ∗ = 0.46), which we later find are caused by the melting of two separate sublattices with

different favorable stoichiometric ratios (NB/NA = 8 and NB/NA = 10).
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Figure 2.2. Heating curves of the equilibrium box size under different num-
ber ratios NB/NA with q∗A = −247, q∗B = +11, κσ = 0.7. First-order sub-
lattice melting is observed at NB/NA = 8, 9, and 10.

The phenomenon of the first-order phase transition occurring only at NB/NA = 8

and NB/NA = 10 in a size-asymmetric binary crystal can be explained by using Wyckoff

positions, a fundamental concept in crystallography [71]. Wyckoff positions are used to

describe the positions of special sites and their symmetries inside a unit cell. In this case,

we use them to describe the location of small particles in the crystal. In an FCC unit

cell, there are two important Wyckoff positions: the 32f and the 8c positions. The 32f

positions are the four inner face centers of the tetrahedral voids in the unit cell, while the
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8c positions are the centers of these tetrahedrons. Since one FCC unit cell also contains

four large particles, the number ratio between the 32f positions and the large particles is

8 : 1, and between the 8c positions and the large particles is 2 : 1. In a size-asymmetric

oppositely-charged binary crystal, the small particles on the 32f positions have lower

energy than on the 8c positions. This is because each particle on the 32f positions is

closer to oppositely-charged large particles than the 8c positions, maximizing the screened

electrostatic interactions that are not long-range. Therefore, in the ionic phases, the small

particles tend to first occupy the 32f positions and then the 8c positions, resulting in two

favorable number ratios NB/NA = 8 and NB/NA = 10. In fact, the 32f positions are

commonly the home for the small particles in a AB8 binary ionic crystal [41, 42, 43, 44].

At low temperatures, the crystal is in the ionic state that is enthalpically favorable but

entropically unfavorable. In this state, the small particles are basically stuck at their

equilibrium positions, resulting in a great entropy loss compared to the superionic state

in which the small particles can access the whole free space inside the crystal. As a result,

there exists a transition temperature above which the system favors entropy over enthalpy

and expands the lattice spacing for small particles previously trapped in the interstitial

positions to delocalize. Figure 2.10 in the Appendix section of this chapter shows how

the diffusion coefficient of small particles varies with the temperature.
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Figure 2.3. Schematic plots of the 32f and 8c Wyckoff positions in the
FCC crystal. (Left) One FCC unit cell contains four atoms (cyan), eight
8c positions (blue), and thirty two 32f positions (red). (Right) The view
from the [001] direction.

Based on volume expansion, the ionic-to-superionic transition appears to be continuous

at number ratios NB/NA < 8. One possible explanation for this is that thermal expansion,

rather than other factors, governs volume expansion in these systems due to the presence of

vacancy defects (unoccupied 32f positions) and lower cohesive energy. When in their ionic

state, these superstructures resemble the interstitial solid solution (ISS) phase observed in

size asymmetric hard-sphere mixtures under high external pressure [72]. In the ISS phase,

the crystal lattice is formed by large spheres, while the small spheres occupy interstitial

sites and diffuse among them via vacancies like a fluid, with the number of small spheres

less than the number of interstitial sites.

To evaluate the nature of the transition, it is necessary to analyze an order parameter,

typically the density fluctuation around the mean density δρ and the correlation length.

When transitioning from isotropic (or delocalized in space) to periodic (localized on lattice
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sites) structures by decreasing the temperature, the symmetry of this order parameter

changes, and the transition cannot be continuous [73]. In Figure 2.4, we show the radial

distribution function of small particles gBB(r) in the crystal with NB/NA = 7 at different

temperatures and observe a change in symmetry. This change is reflected in the differences

in long-range ordering and peak positions between the superionic (T ∗ = 0.8) and ionic

phases (T ∗ = 0.4). Therefore, it is possible that sublattice melting at ratios NB/NA < 8

is weakly first order.

Figure 2.4. The radial distribution function of small particles gBB(r) at
NB/NA = 7 for T ∗ = 0.4, 0.6, and 0.8.
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2.3.2. Free Energy Calculations

Relative Helmholtz free energy landscapes are calculated by thermodynamic integration

methods [70]. In thermodynamics, the Helmholtz free energy, F , is related to the pres-

sure by −P = (∂F/∂V )N,T . Therefore, under constant particle numbers and constant

temperature, the relative free energy can be calculated from the integral:

Frel(V ) = F (V )− F (V0) = −
∫ V

V0

PdV

≈ −
∑
i

(Pi+1 + Pi)(Vi+1 − Vi)/2,

(2.5)

where F (V0) is the reference state, and midpoint approximation was used to numerically

evaluate the integral.
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Figure 2.5. The Pressure–Volume plot obtained in NVT simulations. The
enlarged view of the zero points of the pressure is shown in the Inset.

To evaluate Eqn. (2.5), a series of NVT simulations with a Langevin thermostat are

performed for different volumes Vi at a fixed ratio of NB/NA = 8. The system is first

initialized in the same way as in NPT simulations. After being thermalized in the NVT

ensemble with a Langevin thermostat for 2 × 103τ ∗, the initially large simulation box

is deformed to the volume Vi, and then further equilibrated for 2 × 104τ ∗ to obtain the

corresponding ensemble averages of pressure P ∗
i (see Figure 2.5). The curve at T ∗ = 0.68

in Figure 2.5 resembles a van der Waals loop. However, this curve is a finite-size effect,

which means that the loop on this curve will reduce to a flat line in an infinite system at
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equilibrium [74]. Negative pressures in the simulations indicate that the system tends to

aggregate.

Using the pressure and volume data from Figure 2.5, we computed the relative free

energy landscapes for the system with NB/NA = 8 at different temperatures, as shown

in Figure 2.6. To facilitate comparisons between the depths of the free energy wells and

thermal fluctuations, the curves are plotted as Frel/(T
∗ε) = Frel/kBT . In thermodynamic

integration, the points where the pressure vanishes correspond to extrema in the free

energy landscape. Typically, a single zero in pressure corresponds to a single well in

the landscape, while three zeros correspond to two wells and a maximum. At both low

temperatures (T ∗ = 0.3) and high temperatures (T ∗ = 0.8), the free energy has only one

minimum in the compact state, indicating the ionic and superionic phases, respectively.

The double-well shape around the transition temperature (T ∗ = 0.68) confirms that

sublattice melting is a first-order phase transition when the system is at the optimal

stoichiometry. The volumes at the free energy minima are in good agreement with the

equilibrium volumes obtained in our previous NPT simulations. It is worth noting that

when the free energy has double wells, our NPT simulations tend to sample states with

smaller volumes, as we initialized the system in denser configurations.
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Figure 2.6. Calculations of the relative Helmholtz free energy in the
NB/NA = 8 systems at different temperatures (T ∗ = 0.3, 0.68, and 0.8)
via thermodynamic integration methods. (Top) The overall landscape of
relative Helmholtz free energy. The reference volume V0 is (88σ)3 for all
three temperatures. (Down) Locations of free energy minimums. The ref-
erence volumes are (89σ)3 for T ∗ = 0.3, (90.5σ)3 for T ∗ = 0.68, and (96σ)3

for T ∗ = 0.8. Black arrows mark the state sampled by previous NPT sim-
ulations.
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2.3.3. Phase Coexistence

For NB/NA = 9 systems, we observe two coexisting ionic phases with local number ratios

of NB/NA = 8 and NB/NA = 10, respectively, at low temperatures. As the temperature

increases, each of these phases transitions into superionic phases at different temperatures.

To obtain the local number ratios, we divided the simulation box into small cubic bins,

each of which has 1/8 the volume of the FCC unit cell and is the smallest chemically

identical unit for small particles. After equilibrium, we counted the average number of

small particles in each cube N local
B from 1000 frames taken every 5000 timesteps (10τ ∗).

The local number ratio is then given by NB/NA = 2N local
B as one cube has 1/2 large

particle. The histogram of local NB/NA at different temperatures T ∗ = 0.2, 0.4, and 0.6

combined with corresponding simulation snapshots (Figure 2.7) reveals that at T ∗ = 0.2,

the system consists of two kinds of ionic crystals with stoichiometric ratiosNB/NA = 8 and

NB/NA = 10, respectively. These two ionic phases are both in micro-size and randomly

mixed up (see Figure 2.11 in the Appendix section of this Chapter). However, because

the 8c positions have higher energy than the 32f positions, the NB/NA = 10 ionic phase

has a lower sublattice melting temperature than the NB/NA = 8 phase. Therefore, when

the temperature is raised to 0.4, the NB/NA = 10 phase melts into the superionic state,

and we observe the NB/NA = 8 ionic phases coexisting with superionic phases that have

various local number ratios distributed almost evenly in a wide range. By plotting the

locations of cubes with local NB/NA = 8, we find that instead of aggregating into a macro-

crystal, these ionic cubes form microphases scattered throughout a percolated structure

of superionic phases (the cluster sizes span from 2 to 6 unit cells in our simulations)

probably to decrease the surface strain generated from the lattice constant mismatch
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between the ionic and the superionic phases, as shown in Figure 2.2. Further increasing

the temperature melts the sublattice in the NB/NA = 8 phase, and the whole system

forms a homogeneous superionic phase with NB/NA = 9.

The phase coexistence information indicates that NB/NA = 8 is the most stable

stoichiometric ratio for the ionic phase in FCC crystals. However, it is uncertain whether

there is an optimal stoichiometric ratio for the superionic phase without conducting equal

chemical potential simulations to account for material exchanges. It is worth noting that

with a variety of possible stoichiometric ratios, the system may become a glass state in

which the large particles are fixed while the small ones are fluid, as predicted in charge-

and size-asymmetric ionic systems with Coulombic interactions [75]. In our current work,

we have imposed cubic symmetry and a fixed stoichiometry on the crystal. Therefore,

the equilibrium structure may not represent the most stable state when the symmetry

restriction and stoichiometric constraint are removed, such as in the case of deformable

crystals that can exchange components with the surroundings.
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(a)

(b)

Figure 2.7. Phase coexistence in the system with NB/NA = 9. To obtain
better statistics, we enlarged the simulation box to 8× 8× 8 unit cells. (a)
The histogram of the average number of small particles in sub-unit cubic
bins at different temperatures T ∗ = 0.2, 0.4, and 0.6. NC is the number
of cubes that has a certain local NB/NA and N total

c is the total number of
cubes which is 163 = 4096 here. (Inset) A three dimensional view of the
simulation box showing locations of cubes with local NB/NA = 8 inside
the crystal at T ∗ = 0.4. All the cubes satisfying |NB/NA − 8| < 0.2 are
colored blue while the rest are left blank. (b) Snapshots of the equilibrium
distribution of small particles at T ∗ = 0.2 (left), 0.4 (middle), and 0.6
(right).
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2.3.4. Discussions on depletion effects

Depletion forces are known to play a role in driving the assembly of mixtures of colloidal

particles with different sizes [45, 46]. However, we do not observe these forces playing

a significant role in stabilizing the superionic structures found in our simulations. First,

in our simulations, we do not include explicit salt that could cause depletion attraction

between the nanoparticles [47]. Moreover, in experiments, there is no evidence of monova-

lent salt-mediated attractions, even in large colloids, provided the colloids have sufficient

charge [76], as long as the experiments are performed at 300 mM of NaCl or less. Second,

depletion is mainly entropy-driven and should be enhanced by increasing the tempera-

ture. However, in our simulations, all colloidal crystals melt into gas phases when the

temperature is increased above 1.3, indicating that depletion is not a significant factor

in stabilizing the superionic phases. Third, the system is equilibrated at a finite size in

our zero-pressure NPT simulations, even though the box size is not constrained. This

suggests that the system does not favor adding more free volume for the small particles.

The average distance between two neighboring large particles d in our simulations satisfies

2RA < d < 2σAB, where σAB = RA + RB. Although depletion effects can exist when d is

in the interval
(
2RA, 2σAB

)
, the free volume for small particles Vfree as a function of d in

the FCC structure monotonically increases in the interval
(
2RA, 2(RA +RB)

)
. Thus, the

colloidal superionic structure is not stabilized at any local maximum of Vfree.

2.4. Conclusions

To conclude, we have identified a superionic-like crystal structure in size-asymmetric

charged colloidal systems where the smaller particles melt and hold the larger particles in
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a crystalline lattice via screened Coulomb interactions. By cooling down the system, the

small mobile particles condense to interstitial positions, resulting in an ionic-like struc-

ture. At the stoichiometric ratio where the number of small colloids equals the number

of interstitial positions, this colloidal ionic-to-superionic transition is first order, demon-

strated by the discontinuous change in lattice constant and the double-well shape in the

free energy landscape. The addition of more small colloids inside the lattice leads to the

coexistence of ionic-like domains and percolated superionic-like phases with multiple stoi-

chiometries. This state of the system may provide insights into growing heterostructures.

Overall, our findings provide guidelines to assemble metallic or superionic conductor col-

loidal crystals and set up the foundation for discovering exciting properties and functions

of multicomponent colloidal crystals.
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2.5. Appendix for Chapter 2

2.5.1. System Size Effects

T 6× 6× 6 8× 8× 8 10× 10× 10

0.1 14.84 14.84 14.84

0.2 14.89 14.89 14.89

0.3 14.93 14.93 14.93

0.4 14.98 14.93 14.93

0.5 15.04 15.04 15.04

0.6 15.12 15.12 15.12

0.65 15.18 15.18 15.18

0.66 15.20 15.20 15.20

0.67 15.22 15.22 15.22

0.68 15.25 15.25 15.25

0.69 15.28 15.28 15.28

0.7 16.17 16.17 16.17

0.8 16.30 16.30 16.30

0.9 16.41 16.41 16.41

1.0 16.56 16.56 16.56

Table 2.1. The equilibrium lattice constants (in σ) obtained in the zero
pressure NPT simulations under different temperatures atNB/NA = 8 using
simulation boxes with the sizes 6× 6× 6, 8× 8× 8, and 10× 10× 10 FCC
unit cells, respectively. The results are exactly the same regardless of the
crystal size.
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Figure 2.8. The histogram of the average number of small particles in
sub-unit cubic bins at T ∗ = 0.2, 0.4, and 0.6 using a 6 × 6 × 6 unit cell
simulation box, which is similar to the results obtained from an 8 × 8 × 8
unit cell simulation box in Figure 2.7. Therefore, there are no significant
finite-size effects in our results.
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2.5.2. The Crystal Melting

   simulation time (pressure approaches 0)

Figure 2.9. The melting process of unstable colloidal crystals as pressure
approaches 0 in NPT simulations. The simulation box is expanding to
infinity simultaneously; here κσ = 0.1 and q∗B = +11, NB/NA = 8, T ∗ =
0.3, and q∗A = −247.
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2.5.3. Diffusion Coefficient

Figure 2.10. The equilibrium box size and the diffusion coefficient of small
particles as a function of the temperature at NB/NA = 8. The diffusion
coefficient also leaps at the “ionic-superionic” transition temperature. The
diffusion coefficient is calculated from the mean-square-displacement (MSD)
of small particles ⟨r(t)2⟩ over 5× 106 timesteps using D = ⟨r(t)2⟩/6t.
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2.5.4. Two Coexisting Ionic Phases

(a) (b)

Figure 2.11. The NB/NA = 8 and NB/NA = 10 ionic phases both exist
as microphases when they coexist (overall number ratio NB/NA = 9, T ∗ =
0.2). (a) Distribution of sub-unit cubes (1/8 unit cell) with local NB/NA =
8 in the crystal. All the cubes satisfying |NB/NA − 8| < 0.2 are colored
blue while the rest are left blank. Results show that these NB/NA = 8
ionic cubes are nearly evenly dispersed within the crystal, hence the whole
simulation box is colored blue. This is because at low temperatures the
rearrangement of small particles can only happen between two neighboring
cubes, i.e., two neighboring cubes with initial local number ratio 9/1 become
one 8/1 cube and one 10/1. (b) The local number ratio calculation using
two different cube sizes: 1/8 unit cell (red) and one unit cell (blue). The
two separate peaks (red) merge into one single peak (blue) when using
more coarse grained cubes, showing that these two ionic phases are both in
micro–size.
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2.5.5. Justification of the parameters

Here we justify that the parameters used in our simulations can be converted to reason-

able experimental values, which is helpful for testing our results in experiments. There

are many different ways to convert the quantities from the reduced units used in our

simulations to the real units, and one possible way of conversions we provide is:

• the distance unit: σ=1 nm;

• the reduced temperature: T ∗ = T/(428.6K) where T is the real temperature

and K is Kelvin; the transition temperature in NB/NA = 8 systems is about

T ∗ ≈ 0.7, and we assume it corresponds to the room temperature, 300K; hence

T ∗/0.7 = T/(300K) and then T ∗ = T/(428.6K);

• the energy unit: ε = kB × 428.6K = 5.9× 10−21 J; here kB = 1.38× 10−23 J/K is

the Boltzmann constant;

• the reduced charge: q∗ = qr/(0.161
√
ϵre), where qr is the real charge, e is the

elementary charge, and ϵr is the dielectric constant of the media; this relationship

is obtained by plugging the above quantities into q∗ = q/
√
4πϵ0ϵrσε;

• the reduced pressure: P ∗ = Pσ3/ε = P/(5.9× 106 Pa) where Pa is Pascal.

From these conversions, we have the particle sizes RA = 5σ = 5 nm, RB = 1σ = 1 nm, and

the screening constant κ = 0.7 nm−1 which corresponds to a 44mM NaCl salt solution. For

the charges, assuming the media is water and ϵr = 80, plugging in q∗A = −247, q∗B = +11

we have:

qrA = q∗A(1 + κRA)/e
κRA × 0.161

√
ϵre = −48e

qrB = q∗B(1 + κRB)/e
κRB × 0.161

√
ϵre = +13e
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Note that we are using the effective reduced charges, which need to be first converted to

the bare charges via DLVO and then further converted to the real charges. In real units,

the electrostatic interaction is governed by:

(2.6) U(rij) =
qri e

κRiqrje
κRje−κrij

4πϵ0ϵr(1 + κRi)(1 + κRj)rij

All the parameters, after being converted into real units, are achievable in experiments.

Therefore, in order to verify the ionic-superionic transition found in our simulations,

experimentalists can prepare two kinds of particles with these given size and charge values,

mix them in a 44mM NaCl salt solution, and the transition may be seen at around 300K.
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CHAPTER 3

Superionic Transitions in equilibrium with solutions∗

3.1. Introduction

In Chap. 2, we have shown that the ionic to superionic transition has been observed in

simulations of colloidal crystals of oppositely charged and highly size-asymmetric NPs with

screened Coulomb interactions [32]. Interestingly, a recent experimental research work

combining computer simulations on charged NPs co-assemble with oppositely charged

ions via electrostatics [78] confirmed the dynamic diffusion of ions inside the charged NP

superstructures. They observed the position exchange of ions from the surface of one

NP, through the interface between two NPs, to the surface of another NP. Although the

mobile components are ions instead of small NPs, this is still a giant leap toward realizing

the superionic phase in colloidal crystals.

To explore the possibilities of assembling superionic conductors in colloidal systems in

a more realistic way, we need to study the ionic to superionic transition using Coulomb in-

teractions. This is necessary since the Debye-Hückel approximation and other continuum

theories cannot describe dense charged colloidal systems [79, 80, 81, 82] and particularly

fail to describe ionic compounds and ion-driven condensation [83]. In addition, exper-

imentally, colloidal crystals are assembled in a colloidal solution. The crystal and the

∗This chapter is primarily based on the published work [77] of Yange Lin and Monica Olvera de la Cruz,
Superionic Colloidal Crystals: Ionic to Metallic Bonding Transitions, J. Phys. Chem. B 126.35
(2022): 6740-6749., with modified notations and extended details to comply with the structure of this
work.
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colloid solution are in dynamic equilibrium. That is to say when the crystal undergoes

structural changes or transitions, it needs to re-establish the equilibrium with the so-

lution and its composition should adjust accordingly. In turn, changes in the solution

should affect the crystal as well. Simulations and analysis of the ionic-metallic transition

in colloidal crystals [32, 63, 64, 66], however, do not consider molecular and/or atomic

exchange between the crystal and the solution. That is, the simulations consider an iso-

lated crystalline phase whose composition does not react to changes in the temperature

or the solution conditions, whereas the composition of the assembled crystals should be

an outcome of the experimental conditions, instead of a controlling parameter.

Plenty of studies have proven that the solution conditions have profound impacts

on the materials. In polymer systems with charged monomers, the like-charge repulsions

between monomers keep the polymers extended. The addition of salt and the condensation

of counterions will screen the repulsions and induce the polymer collapse [83, 84, 85].

More complicated are the hydrogels. Apart from the ion correlations, the salt addition

has competing effects on the hydrogel [86]. On the one hand, the hydrogel is compressed

due to the increase of the osmotic pressure; on the other hand, the hydrogel swells because

of the absorption of more ions as their chemical potentials in the solution increase. It is

fascinating that the competition between these two effects is sensitive to the valency of

salt ions. A similar competition is expected to exist in our colloidal systems.

In this paper, we study the composition and crystal spacing of a charged colloidal

crystal in a solution by imposing equilibrium between the colloidal crystal and the rest of

the solution (hereafter referred to as reservoir), including the ions explicitly (i.e., using

Coulomb interactions) in implicit solvent. Our aim is to reveal how the crystal assemblies
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react to external conditions, specifically the temperature and the solution composition.

In our MD simulations, we use the restricted primitive model [86, 87] where the charged

components interact via Coulomb and hard-core interactions, which has successfully de-

scribed both ionic and superionic gels [88].

Given the complexity of the multi-component system, it is impossible for our study to

cover all adjustable parameters. Compared to the density of small particles, the density

of large particles is less important, since studying the phase behavior of large particles is

not the focus. Thus, in the simulations, we kept the volume fraction of large NPs in the

solution constant at 0.3. This volume fraction is dense enough for NPs to assemble while

is still dilute for a solution phase to exist. The small to large charge ratio is 1 : 4 while

the small to large number ratio is always no less than 4 : 1 so that a necessary number

of counterions of small NPs are included to neutralize extra small NPs. No extra salt is

added. Therefore, the controlling parameters are the concentration of small NPs in the

reservoir, ϕres
s , and the temperature, T .

We begin by simulating the assembly in the solution to determine the crystallization

conditions and the crystal structure. However, the lattice constant and the composition

of the crystal are difficult to identify from the assemblies in the solution. Therefore, we

continue with osmotic ensemble simulations [86]. That is, we simulate the crystal and

the reservoir separately in two boxes, with each box representing a region in the bulk of

an infinitely large phase. Due to the presence of excess small NPs, we assume all large

NPs crystallize so the amount remaining in the reservoir is negligible. Thus, the reservoir

contains only small NPs and counterions, while the crystal contains the large NPs in a

particular lattice with small NPs and counterions inside (Figure 3.1A), and the small
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NPs and counterions are exchangeable between these two phases. To maintain the charge

neutrality, the minimum exchanging unit is one small NP accompanied by its neutralizing

counterions, which, for the sake of simplicity, is termed small NP neutral cluster and

denoted by sp hereafter. Phase equilibrium is achieved when the reservoir and the crystal

have both equal osmotic pressure and µsp. We quantify the equilibrium colloidal crystal

properties from the crystalline box simulations and observe a discontinuous increase in

lattice constant when ϕres
s or T increases, which represents an ionic to metallic transition.

We also provide a theoretical understanding for the ionic-metallic transition based on

free energy calculations. The ionic state in our theoretical model has small NPs located

at interstitial sites and randomly hopping among these sites (Figure 3.1B). The metal-

lic state has an even density distribution of small NPs within the lattice (Figure 3.1C).

The cohesive energy consists of the lattice vibrational energy obtained from the quasi-

harmonic phonon model, and the electrostatic energy, which is computed via Madelung

sum calculations for the ionic state and via the Wigner-Seitz cell approach [89, 90, 91]

for the metallic state. The entropic term counts for the contribution of delocalized com-

ponents. We determine the more stable state through the comparison between these two

free energies and reproduce the ionic-metallic transition in simulations. The free energy

comparison also reveals the driving force of the ionic-metallic transition to be enthalpic

instead of entropic.
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A CB

Figure 3.1. Outline for the simulation setup and the theory. (A) the col-
loidal crystal of large (pink) and small NPs (cyan) is in equilibrium with the
reservoir containing excess small NPs and their counterions (purple). These
two phases are simulated separately, with the equilibrium characterized by
the mechanical equilibrium (equal pressure) and the chemical equilibrium of
exchanging small NPs accompanied by neutralizing counterions (as shown
in the dashed circle). (B) The density distribution of small NPs shown as
cyan isosurface in a 2 × 2 × 2 unit cell ionic FCC crystal, obtained from
MD simulations, which will be used as the density distribution function for
the ionic state in our model. It covers all the 32f and 8c Wyckoff positions
[32, 71] of the FCC lattice. (C) The density distribution of small NPs in
the metallic FCC crystal, which will be used as the density distribution
function for the metallic state in our model. The small NPs can access all
the free space within the lattice.

In order to be in accordance with the original work [77], we use the term metallic

instead of superionic. In fact, these two terms are not exactly the same and partly

capture the phenomena in colloidal systems, respectively. The charged large lattice is

held together purely by small NPs carrying opposite charges. This way of aggregation is

closer to metals than superionic conductors in which the frame is connected via covalent

bonds. In contrast, there are no quantum effects existing in colloidal systems, especially

since small NPs cannot actually behave as electrons. Here, in this chapter, metallic is used
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not only to emphasize the metal-like way of aggregation but also because the Wigner-Seitz

cell approach we used in the free energy calculation is a common method to evaluate the

electron-nuclei interactions in metal solids [92, 93, 91].

3.2. Methods

3.2.1. Simulation setup

All of our MD simulations are done in the LAMMPS software package [69]. The Coulomb

potential is evaluated by the particle-particle particle-mesh (PPPM) method with GPU

acceleration [94, 95, 96, 97, 98]. Images of simulation results are created using VMD [99].

In the simulations, we used reduced quantities defined relative to the energy unit ϵ,

the distance unit σ, and the mass unit m. The reduced quantities include the reduced

temperature T ∗ = kBT/ε, reduced pressure p∗ = pσ3/ε, reduced time τ ∗ = t
√
ε/(mσ2),

and reduced charge q∗ = q/
√
4πϵ0ϵrσε with ϵ0 being the permitivity of the space and ϵr

being the relative dielectric constant. The solvent is treated as an implicit medium. All

the simulations follow Langevin dynamics.

The interaction between a pair of charged particles i and j separated by the vector

rij (whose magnitude is |rij| = rij) is included by a repulsive Weeks-Chandler-Andersen

potential (UWCA) and the Coulombic potential (Uel) as

(3.1) UWCA(rij) =


4ε

[(σij
rij

)12
−
(σij
rij

)6]
+ ε, rij < 21/6σij.

0, rij > 21/6σij.

(3.2) Uel(rij) =
qiqj
rij

,
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where σij is calculated using the Lorentz-Berthelot mixing rules σij = Ri + Rj. Here,

Rl = 5, Rs = 1, and Rci = 0.2 are the radii of the large NPs, small NPs, and counterions,

respectively. And the charges are ql = −100, qs = +25, and qci = −1 for the three species.

All quantities are expressed in dimensionless reduced units.

3.2.2. Osmotic ensemble simulations

The simulations are conducted in two steps: first, we simulate the whole mixture in the

NVT ensemble to obtain a rough phase diagram; second, we simulate the solid phase

and the solution phase separately and acquire their equilibrium via the osmotic ensemble

simulations.

For the simulations of the whole mixture, we set up the system by randomly initializing

a fixed number (80) of large NPs, a certain amount of small NPs (varying by individual

simulation), and the necessary amount of neutralizing counterions in a (50σ)3 periodic

cubic box. The system was then thermalized in the NVT ensemble for 6× 104τ to reach

equilibrium.

The reservoir is simulated as a (50σ)3 periodic cubic box. The small NPs and their

counterions are randomly initialized in the box, and the system is run for 5× 103τ in the

NVT ensemble to reach equilibrium. After equilibrium, we sample the potential energy

of each particle every 1τ for 10000 times, which are then input in the calculation of µres
sp

using the real particle method. The equilibrium osmotic pressure is simply the ensemble

average of the virial pressure of the system.

The crystal is simulated as a periodic cubic box consisting of 4× 4× 4 FCC unit cells

with various stoichiometries n. At each n, we first set up the system by initializing the
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large NPs on lattice sites with relatively wide lattice spacing and adding the small NPs

as well as the counterions inside the voids. After energetically equilibrating the system

using NVE integration for 4τ , we gradually shrink the lattice to a close-packing size and

pressurized it at a pressure three times larger than the final pressure for 100τ in the NPT

ensemble. The lattice is depressurized 200τ to the final pressure and equilibrated for

6000τ followed by an additional 1500τ for sampling. The potential energy of each small

NP and counterion are sampled for calculation of µcry
sp via the real particle method.

3.2.3. Real particle method

The chemical potential is calculated via the real particle method [100, 101]. It is based on

the Widom test particle deletion method [102, 70], which gives the chemical potential of

a N -particle system as

(3.3) µ = kBT ln
(
NΛ3/V

)
+ kBT ln

〈
exp
( uN
kBT

)〉
N
.

Here, Λ = h/
√
2πmkBT is the thermal de Broglie wavelength, where h is the Planck

constant and m is the mass of the particle. uN is the total interaction energy between

the selected particle (to be deleted) and the rest N − 1 particles

(3.4) uN =
N−1∑
i=1

uiN

and ⟨...⟩N stands for the ensemble average over the N -particle system.

The problem with the deletion method is that [102]: it is not possible to estimate the

chemical potential correctly by deleting a particle, due to inefficient sampling of the highly
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positive energies felt by the removed molecule which contribute greatly to the chemical

potential. Thus, note that each of the N particles in one equilibrium configuration has

an equal probability of being deleted, the real particle method has

(3.5)
〈

exp
(uN
kT

)〉
N
=

M∑
j=1

N∑
i=1

exp
( uji
kT

)
/(NM),

where M is the number of sampled configurations, and uji is the potential energy of the

ith particle in the jth configuration. Eqn. (3.5) uses the properties of all the atoms while

requiring no actual trial deletions, and thus it has a much higher sampling efficiency than

sampling individual particle deletions.

Insertion methods such as the Widom test particle insertion method [70] fail in dense

systems due to strong overlaps. The free energy perturbation method [70], or the so-called

stage insertion method, experiences large fluctuations in our numerical implementation

because results are sensitive to the initial insertion position. Therefore, we chose the real

particle method for this work.

3.3. Theory

3.3.1. Free energy

We calculate the free energy of the ionic and metallic states as a function of the lattice

constant and n to predict which is the equilibrium phase under different environmental

conditions. The Gibbs free energy per unit cell is

(3.6) g(Ns, Vc) ≡ G/Nc = min
Vc

(fid + fel + fvib + pVc).
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Here, Ns is the average number of small NPs per FCC unit cell, Vc is the unit cell size, and

Nc is the number of unit cells in the whole crystal. The first term, fid, accounts for the

ideal entropic contribution of diffusive particles. The second term, fel, is the electrostatic

contribution. The third term, fvib, is the contribution attributed to the thermal vibrations

of the lattice.

The state of the crystal, ionic or metallic, can be told from the density distribution of

small NPs, {ρ(rrr)}. To pursue an accurate determination of the density distribution, one

may treat the free energy of a functional of {ρ(rrr)}. By minimizing G({ρ(rrr)}) (locally or

globally) with respect to {ρ(rrr)}, the equilibrium {ρ(rrr)} can be identified. The resulting

ρ(rrr) is likely to be a mixed state of ionic and metallic where small NPs are diffusive while

staying at the interstitial sites for a longer time. Such mixed states are what have been

observed in experiments [62, 65] and simulations [63, 64, 32]. However, these calculations

require solving the Poisson equation in a dense system, which still lacks an analytical

way so far. To avoid the lengthy iterative numerical computation, we assume only two

possible equilibrium density distributions, {ρI} and {ρM}, for the ionic and metallic states,

respectively, as shown in Figure 3.1(b) and 3.1(c). The counterions are assumed to be

delocalized (fully mobile) in both states. The small NPs in the metallic state are assumed

to have a homogeneous distribution in the unoccupied space inside the crystal, while in

the ionic phase, they are assumed to have an equal probability to appear at any interstitial

site. These approximations allow us to evaluate the free energy analytically in a simple

manner.

In the following three subsections, we sequentially present the calculations of fid, fel,

and fvib, based on {ρI} and {ρM}.
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3.3.2. The ideal term.

In the ionic state, counterions are moving in a free space V I
f = Vc −Nlvl −Nsvs where vl

and vs are the volumes of individual large and small NP, respectively. In the metallic state,

both small NPs and counterions are moving in a free space V M
f = Vc − Nlvl. Therefore,

we have

(3.7) βf I
id = Nci(lnρIci − 1),

(3.8) βpIid = ρIci,

(3.9) βµI
id = |qs|lnρIci,

and

(3.10) βfM
id = Nci(lnρMci − 1) +Nsp(lnρMs − 1),

(3.11) βpMid = ρMci + ρMs ,

(3.12) βµM
id = |qs|lnρMci + lnρMs ,

where ρIci = Nci/V
I
f , ρMci = Nci/V

M
f , and ρMs = Ns/V

M
f , with ci standing for counterions.
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3.3.3. The electrostatic term.

The ionic state in our theoretical model is that with large NPs being fixed at lattice sites,

small NPs hop among the 8c and 32f Wyckoff interstitial sites with an equal visiting

probability, while counterions freely roam in the crystal voids. For a crystal with a

given n, each interstitial site has on average 4n/Nint small NPs and 4(n − c)|qs|/Nint

counterions in its vicinity, where c = |ql/qs| = 4 is the large to small NP charge ratio

and Nint = 40 is the number of interstitial sites per unit cell. We average these 4n/Nint

small NPs and 4(n − c)|qs|/Nint counterions into a pseudo particle, which has a charge

qps = −4ql/Nint, and assume the system to be a crystal compound of large NPs and

these pseudo particles located at interstitial sites. As a result, the electrostatic energy is

separated into the interaction between large NPs and pseudo particles and the internal

energy of pseudo particles. The first term can be obtained via Madelung sum calculations,

where the Madelung constants for large NP lattice sites, the 8c sites, and the 32f sites

are, respectively, given as

(3.13) Ml =
∑

rijk∈Ωl,l

ql
rijk/a

+
∑

rijk∈Ωl,32f

qps
rijk/a

+
∑

rijk∈Ωl,8c

qps
rijk/a

,

(3.14) M32f =
∑

rijk∈Ω32f,l

ql
rijk/a

+
∑

rijk∈Ω32f,32f

qps
rijk/a

+
∑

rijk∈Ω32f,8c

qps
rijk/a

,

(3.15) M8c =
∑

rijk∈Ω8c,l

ql
rijk/a

+
∑

rijk∈Ω8c,32f

qps
rijk/a

+
∑

rijk∈Ω8c,8c

qps
rijk/a

.
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Here, Ωα,α′ is the infinite set of coordinates of all α′ positions when setting the α position as

the origin. The Madelung constants are numerically evaluated via Eqns. (3.13), (3.14),

and (3.15) and given by Ml = 501.4, M32f = −26.26, and M8c = −55.42 (details are

provided in Table 3.1 in the Appendix section of this Chapter).

The internal energy of a pseudo particle, ups, includes the attraction between 4n/Nint

small NP and 4(n − c)|qs|/Nint surrounding counterions, as well as the repulsion among

these counterions. We use a characteristic length, Lps, for the interaction inside pseudo

particles. We approximate Nint(Lps)
3 = Vc since the total interaction volume of all pseudo

particles is the unit cell. Then, the internal energy of pseudo particles per unit cell is

estimated as

Ups ≡ Nintups =
Nint

Lps

[(
4n

Nint

qs

)
4(n− c)qsqi

Nint

+
16(n− c)2q2sq

2
i

2×N2
int

]
= −8q2s(n

2 − c2)

N
2/3
int

V −1/3
c .

(3.16)

Therefore, the electrostatic energy per unit cell is given as

(3.17) f I
el =

[
CI −

8q2s(n
2 − c2)

N
2/3
int

]
V −1/3
c

with

(3.18) CI = −1

2
(4qlMl + 32qpsM32f + 8qpsM8c) = −106698.7,

and, correspondingly

(3.19) pIel =
∂f I

el

∂Vc
=

1

3

[
CI +

8q2s(n
2 − c2)

N
2/3
int

]
V −4/3
c ,
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(3.20) µI
el =

∂f I
el

Nl∂n
= −4q2sn

N
2/3
int

V −1/3
c

In the metallic phase, we use the Wigner-Seitz (WS) cell approach [91, 90] to evaluate

the electrostatic energy. A WS cell is the space surrounded by the planes perpendicularly

bisecting the lines connecting the nearest large NPs. For an FCC crystal, each WS cell is a

charge-neutral dodecahedron, containing one large NP at the center and a homogeneous

oppositely charged background together formed by n small NPs as well as (n − c)qsp

counterions. The electrostatic energy can be then divided into two terms: the self energy

in each dodecahedron and the interactions between dodecahedra. The self energy of one

dodecahedron is given as

Uself =ql
∑
j

qj

∫
cell

drrrj
r

+
∑
j

qj
∑
k ̸=j

qk/2

∫∫
cell

drrrjdrrrk
|rrrj − rrrk|

=− q2lD1 +
∑
j

qj(−ql − qj)D2/2

=− q2l (D1 −D2/2)−
∑
j

q2jD2/2,

(3.21)

where the sum goes through all delocalized particles (small NPs and counterions) inside

one Wigner-Seitz cell, and

(3.22) D1 =

∫
cell

drrr
r

= 3.80249V −1/3
c ,

(3.23) D2 =

∫∫
cell

drrrdrrr′
|rrr − rrr′|

= 3.02998V −1/3
c .
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Substituting D1 and D2, Eqn. (3.21) becomes

(3.24) Uself =
{
−2.29q2l − 1.51nq2s − 1.51(n− 4)|qs|

}
V −1/3
c .

The interactions between nearest-neighbor (NN) WS cells are explicitly written as

(3.25) UNN =
√
2q2l V

−1/3
c − 2q2lD3 + q2lD4,

and

(3.26) D3 =

∫
cell

drrr
|rrr − xxx/

√
2|

= 1.42197V −1/3
c ,

(3.27) D4 =

∫∫
cell

drrrdrrr′

|rrr − rrr′ − xxx/
√
2|

= 1.42191V −1/3
c ,

where xxx/
√
2 is the displacement between the centers of mass of two neighboring large

NPs, with |xxx| equal to the lattice constant. Therefore, we have

(3.28) UNN = −7.19× 10−3q2l V
−1/3
c .

Since each WS cell is in contact with 12 other WS cells, there are 12× 4/2 = 24 pairs of

NN interactions in one FCC unit cell. In sum, the electrostatic energy is

(3.29) fM
el = 4Uself + 24UNN ,
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and correspondingly,

(3.30) pMel = −∂f
M
el

∂Vc
,

(3.31) µM
el =

∂fM
el

Nl∂n
.

3.3.4. The lattice vibrational term.

Lastly, we consider the excluded-volume effect of the lattice which generates the inner pres-

sure that balances the attractive electrostatic interactions. We use the classical phonon

model to describe the thermal vibrations of the lattice and calculate the inner pressure.

Following the Grüneisen equation of states [90], the free energy of the lattice attributed

to vibrations is given as

βFvib =
∑
qqq,s

{
1

2
βh̄ωs(qqq) + ln

(
1− e−βh̄ωs(qqq)

)}

=

∫ ∞

0

{
1

2
βh̄ω + ln

(
1− e−βh̄ω

)}
ρ(ω)dω.

(3.32)

Here, h̄ = h/2π with h being the Planck constant, qqq is the wavevector, ωs(qqq) is the phonon

frequency of the s-th vibrational mode as a function of qqq, and ρ(ω) is the density of states

for phonons in continuous form. The Grüneisen parameter, γ, describes how ω changes

with the lattice volume

(3.33) γ = −dlnωs(qqq)

dlnV ,
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which Grüneisen assumed is a common constant for all vibrational modes. That is to say

(3.34) ω(Vc) = ξV −γ
c ,

where ξ is a constant coefficient. Experimental measurements of γ in various crystals

usually give 1 ≤ γ ≤ 3 [90]. In our system, the vibrational pressure is governed by the

volume excluding force, FWCA = −∂UWCA/∂r ∝ r−13. Thus, according to the virial

theorem, we have

(3.35) pvib ∝ ⟨rrr ·FFFWCA⟩ ∝ r−12 ∝ V −4
c ,

which gives γ = 3.

In order to evaluate Eqns. (3.32), we assume that ρ(ω) possesses the form identical

to the classical Debye model:

(3.36) ρ(ω) =


NcNdofω

1/γ−1

γω
1/γ
m

, ω ≤ ωm.

0, ω > ωm.

where ωm is the cutoff frequency and Ndof is the total degrees of freedom (DOF) in one

unit cell. Substituting Eqn. (3.36) into Eqn. (3.32) and using the low-temperature limit

that βh̄ω ≫ 1 (the equation under the high-temperature limit is discussed in Subection

3.6.6 in the Appendix section of this Chapter, which is not coordinated with our results),

we obtain the lattice vibrational free energy per unit cell as

(3.37) βfvib ≈
βh̄Ndof

2(γ + 1)
ωm =

A(n)

γ
V −γ
c ,
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where we use ωm = ξmV
−γ
c from Eqn. (3.34), and

(3.38) A(n) =
γNdofβh̄ξm
2(γ + 1)

,

where the n-dependency comes from Ndof . Correspondingly,

(3.39) βpvib = A(n)V −γ−1
c ,

(3.40) βµvib =
dA(n)

dn
V −γ
c

Nlγ
.

Ideally, Ndof equals the product of the dimensionality and the total number of particles

in the lattice, but our crystal is more complicated because of particle hopping and the

coupling between mobile particles (small NPs and counterions) and phonons. Thus we

evaluate A(n) by fitting it to simulation data of pressure and the results match well with

Eqn. (3.39) (see Figure 3.13 and Table 3.2 in the Appendix section of this chapter).

3.4. Results and Discussions

3.4.1. Crystallization

In the simulations of the whole colloidal system, we observe that at low temperatures and

low small to large number ratios Ns/Nl, the large NPs aggregate with the small NPs via

electrostatic attractions. We analyze the radial distribution function between large NPs,

gll(r), and confirm that the first four peaks in gll(r) match the typical peak positions of

FCC crystals (Figure 3.2(a) and 3.2(b)). When we increase the temperature (comparing

Figure 3.2(a) and 3.2(c)) or add more small NPs into the system (comparing Figure
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3.2(b) and 3.2(c)), the peaks in gll(r) gradually become smooth (liquid-like). Simulation

snapshots show, in this process, the melting of the crystal (Figure 3.3(a)) to a gel/liquid-

like state (Figure 3.3(b)). This is either due to enhanced thermal motion, or enhanced

screening effects that weaken the electrostatic attractions [103]. The latter often causes

the re-dissolution of ionic-driven assemblies in the absence of short-ranged attractions

between components [104, 105].
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(a)

(c)

(b)

Figure 3.2. The gll(r) in three equilibrium systems of binary charged col-
loidal systems with varying temperature and small to large number ratio
Ns/Nl: (a) Ns/Nl = 16 and T = 0.6, (b) Ns/Nl = 6 and T = 1.0, and
(c) Ns/Nl = 16 and T = 1.0. The distances are scaled by a∗, which is the
position of the first peak in each gll(r). The red lines mark the first four
peak positions in a typical FCC crystal, at r/a∗ = 1,

√
2,
√
3, and 2.
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Based on gll(r), a schematic phase diagram as a function of T and ϕres
s is shown in

Figure 3.4. In the NVT simulations, we are able to control the overall Ns/Nl but not the

concentration of small NPs in the solution. In addition, it is difficult to unambiguously

decide if a small NP at the interface belongs to the reservoir or the crystal. Therefore, we

obtain ϕres
s in Figure 3.4 by estimating it as a linear function of Ns/Nl (for details, see

the discussion in Subsection 3.6.1 in the Appendix section of this Chapter). This is only

to provide an approximate density regime of crystallization for later simulations. The

roughness of the estimation has little impact on our results.

(b)(a)

Figure 3.3. The transition from ionic bondings to metallic bondings in the
colloidal crystal as the solution concentration of small NPs increases. (a)
A snapshot of the FCC crystal, taken in the system with Ns/Nl = 6 and
T = 1.0, using the same color scheme as in Figure 3.1. And (b) a snapshot
of the gel/liquid phase, taken in the system with Ns/Nl = 16 and T = 1.0.

We also observe that in low-number ratio systems (Ns/Nl = 4), the small NPs barely

move inside the crystal, but in high-number ratio systems (Ns/Nl = 10), the small NPs are

able to roam inside the crystal. Similar transitions are observed when the temperature
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increases. This supports the existence of an ionic-metallic transition in the forming of

crystals. To explore the transition more quantitatively, we perform osmotic ensemble

simulations, which simulate the bulk of the reservoir and the crystal separately.

Figure 3.4. A schematic phase diagram of the oppositely charged size-
asymmetric colloidal systems with ql : qs = −100 : +25 as a function of
temperature and small NP density in the reservoir. The large NP density
is fixed at 0.3. The terms fcc crystal and gel/liquid refer to the state of the
large NPs.

3.4.2. Reservoir phase

Figure 3.5 shows the canonical ensemble (NVT) simulation results on the reservoir con-

taining only small NPs and counterions. The osmotic pressure p grows nearly linearly

with the concentration of small NPs under all three temperatures simulated, as expected.
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The small NP neutral cluster, one small NP and its neutralizing counterions, is the small-

est unit for the material exchange. The chemical potential of a cluster is the sum of that

of every particle, µsp = µs + |qs|µci, where µs and µci are the chemical potential for the

small NPs and counterions, respectively. As ϕres
s increases, µres

sp initially increases and

slowly flattens, and at low T seems to even decrease. The non-monotonic behavior of

µres
sp at large ϕres

s at T = 0.6 in Figure 3.5 is due to the electrostatic repulsion among

counterions. The electrostatic repulsion is the main factor that raises µres
sp , saturating at

a certain concentration. Above this concentration, µres
sp drops as the attractions between

the small NPs and counterions dominate (see Figure S2 for more details).

Figure 3.5. The NVT ensemble simulation results for the reservoir. (Left)
the equilibrium osmotic pressure, and (right) the chemical potential of small
NP neutral clusters under different ϕres

s and T . Each data point comes from
the average of three parallel runs.

3.4.3. Crystalline phase.

Unlike the reservoir phase whose composition can be tuned freely, the crystalline phase is

subjected to external constraints. Hereafter, we use n to stand for a reduced stoichiometry

notation of a binary compound ABn, where A and B are the large and small components,

respectively. We tune n of the crystal and calculate the chemical potential of small
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NP neutral clusters inside the crystal, µcry
sp . Note that the pressure has been already

equalized since we use p in the reservoir in the NPT simulations of the crystal. Thus,

when µcry
sp equals µres

sp shown in Figure 3.5 (see Figure S3 for details of how we determine

the equalizing point), we acquire the equilibrium crystals under given conditions (T and

ϕres
s ). As a result, the equilibrium stoichiometries neq and the equilibrium lattice constants

aeq are also obtained.
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(a)

(b)

(c)

(d)

Figure 3.6. The osmotic ensemble simulation results for the crystal. (a)
the equilibrium lattice constants of the crystal, and (b) the equilibrium
small to large NP ratio inside the crystal; (c) a snapshot of the crystal in
equilibrium with the reservoir with T = 1.0 and ϕres

s = 0.01, where the large
particles are presented in reduced size and counterions are not shown for
better visualization, and (d) a snapshot of the crystal in equilibrium with
the reservoir with T = 1.0 and ϕres

s = 0.02.

Both neq and aeq as functions of ϕres
s under different T are shown in Figure 3.6(a) and

3.6(b). When ϕres
s increases, additional small NPs get into the crystal at equilibrium as

the chemical environment becomes less favorable for them in the reservoir. The lattice
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constant also increases with ϕres
s , and we show in the theory section that this is a conse-

quence of enhanced lattice vibration caused by increasing T or ϕres
s . However, the lattice

expansion is not always smooth. In Figure 3.6(a), we observe that the lattice constant has

a rapid increase and then flattens. Such a discontinuous pattern is often an indicator of a

first-order phase transition, which in our system is the ionic-metallic transition. Snapshots

of the lattice verify the fact that the small NPs are located at the interstitial sites before

the rapid lattice expansion (Figure 3.6(c)), as is characteristic of ionic compounds, and

after the expansion, the small NPs become delocalized (Figure 3.6(d)). Meanwhile, the

lattice in the metallic state experiences larger vibration and distortion while maintaining

the FCC structure, which is also found in NPs with grafted linkers interacting with large

NPs [63, 64]. Based on the equilibrium configurations of the crystal, we further divide

the FCC phase in Figure 3.4 into the ionic and metallic states (Figure 3.7).
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Figure 3.7. A schematic phase diagram of the oppositely charged size-
asymmetric colloidal systems as a function of temperature and small NP
density in the reservoir obtained by the osmotic simulations. The terms
FCC crystal and gel/liquid refer to the state of the large NPs.

Lattice expansion is commonly observed during the delocalization of small particles.

In charged colloidal systems, computer simulations always predict the lattice expansion

during delocalization to be discontinuous, no matter if the electrostatic interactions are

modeled as screened [32] or not (in the present work). On the contrary, in the DNA-

functionalized NP systems where the attractions between large and small NPs come from

the hybridization of their grafted complementary DNA strands, the lattice expansion

tends to be smooth unless a change in lattice structure takes place [62, 63, 64, 65]. One

possible reason is that, compared to charged colloidal crystals, the coherent energy of

functionalized colloidal crystals is less sensitive to changes in the lattice constant. This
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is not only because the repulsions between large NPs are short-ranged (mostly hard-

cored), but also because the end-to-end interactions between large and small NPs are less

influenced by the particle distance due to the flexibility of DNA strands.

Computer simulations show that high temperature and high small NP density in

the reservoir both can induce the metallic state. Although the reasons behind this are

complicated, our analytical results described below explain them. Temperature-induced

transitions may occur due to the entropy gain from delocalized particles, or enhanced

lattice vibrations. The density-induced transition may occur because the metallic state

becomes more stable as more small NPs are squeezed into the crystal, yet how this effect

competes with increasing osmotic pressure which suppresses the lattice expansion and

hence favors the ionic state is still unclear.

3.4.4. Analytical results

We calculate the free energies, the pressure, and the chemical potential of the small

NP neutral cluster for the ionic and the metallic states for given n and Vc using the

theoretical model in the Methods section. We obtain the equilibrium number ratio neq

and the equilibrium lattice constant aeq by analytically solving the equations

(3.41) ∂g

∂Ns

= µres
sp ,

(3.42) ∂g

∂Vc
= 0,
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or

(3.43) p = −∂fid
∂Vc

− ∂fel
∂Vc

− ∂fvib
∂Vc

= pvib + pid + pel,

where the reservoir constraints {µres
sp , p} are acquired from the NVT simulations of the

reservoir in Figure 3.5.

The change of neq is similar to the change of µres
sp with respect to ϕs (Figure 3.8(a))

because more small NPs are squeezed into the crystal when the reservoir becomes less

favorable to the small NPs. In contrast, aeq (Figure 3.8(b)) varies little with ϕres
s because a

tiny change in volume can cause a large pressure change. However, it increases profoundly

with the temperature, as pid and pvib both scale with temperature. The crystal expansion

with increasing temperature induces a larger neq shown in Figure 3.8(a). Note that under

the same external conditions, the metallic crystals always have a larger cell size than the

ionic crystals due to their stronger lattice vibrations (i.e. inner pressure). As a result, the

metallic crystals are able to accommodate more small NPs at equilibrium. Meanwhile,

neq
M > neq

I is also a reason for the transition, as additional small NPs and their counterions

screen and weaken the interactions between the large and small NPs, which in part causes

the sublattice melting. The effect that weak bondings or shallow potential energy wells

within the lattice of large particles aid the small particles to delocalize via thermal motions

has been reported in other works [62, 63, 64, 106, 65] introduced in Chap. 2.
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(a) (b)

Figure 3.8. Analytical solutions of the Gibbs free energy equalities Eqns.
(3.41) and (3.42). (a) the equilibrium number ratio neq for the ionic and
metallic crystals in response to various reservoir small NP densities ϕres

s

at different temperatures, and (b) the corresponding equilibrium lattice
constant aeq for the ionic and metallic crystals.

From the equilibrium external variables neq and aeq (which gives V eq
c ), we calculate the

free energies of an ionic crystal geqI and a metallic crystal geqM with those properties. The

state with lower free energy is the actual equilibrium state of the crystal. The difference

between the ionic and metallic states’ free energies is given by

∆geq = geqI (neq
I , a

eq
I )− geqM(neq

M , a
eq
M) +Nl(n

eq
M − neq

I )µres
sp

= ∆f eq
id +∆f eq

vib +∆f eq
el + p∆V eq

c + µres
sp ∆N eq

s ,

(3.44)

where the third term on the right-hand side of the first equation accounts for the fact that

the transition between the two states is accompanied by absorbing/expelling small NP

neutral clusters in/out of the crystal, and thus it allows us to compare the free energies

on the basis of an equal number of particles. The second equation divides ∆geq into

individual terms as the free energy difference in the ideal term, the vibrational term, the
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electrostatic term, the mechanical work term, and the material exchanging term with

∆N eq
s = Nl(n

eq
M − neq

I ), enabling us to identify the key factor responsible for the ionic-

metallic transition. With ∆geq < 0 indicating the ionic state is more stable and vice versa,

Figure 3.9 shows that the increase in temperature and the increase in ϕres
s both favor the

metallic state, hence can induce the ionic-metallic transition.

Figure 3.9. The free energy difference between the ionic and metallic states
∆geq = geqI − geqM calculated from Eqn. (3.44).

An analysis of each term in free energy difference in Eqn. (3.44) at different temper-

atures T = 0.6, 0.8, and 1.0 and at a fixed ϕres
s = 0.03 is shown in Figure 3.10(a). It

reveals that the ionic state has lower electrostatic free energy (∆f eq
el ), as the small NPs

locating at the interstitial sites tends to maximize their Coulombic interaction with the

large NPs. Also, the mechanical work term p∆V eq
c favors the ionic state, as well as the
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material exchanging term µres
sp ∆N eq

s , because the equilibrium ionic crystal always has a

smaller size and a smaller number ratio than the equilibrium metallic crystal under same

conditions. Meanwhile, the metallic state has lower ideal free energies (∆f eq
id ) as it has

more delocalized particles and hence larger entropy. The lattice vibrational energy term

∆f eq
vib also favors the metallic state mainly due to a larger crystal spacing size.

The terms ∆f eq
id and µres

sp ∆N eq
s dominate and have opposite signs, showing a com-

petition between small NPs staying in the reservoir and delocalizing inside the crystal.

However, the sum of these two terms is close to zero and barely changes with the tem-

perature, meaning that the free energy loss of additional small NPs leaving the reservoir

is well compensated by their delocalization inside the crystal. Thus, the entropic effect

is not the driving force for the temperature-induced transition. Instead, we attribute the

transition to the increase of ∆f eq
el , which is a result of neq

M growing faster with temperature

than neq
I as shown in Figure 3.8(a).
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(a)

(b)

Figure 3.10. An analysis of each term in free energy difference between
the ionic and metallic states. (a) Changes with the temperature at a fixed
reservoir small NP density ϕres

s = 0.03, and (b) changes with ϕres
s at a fixed

temperature T = 0.8.
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Akin to the temperature-induced transition, the increase of ∆f eq
el is also the main

driving force for the density-induced transition, as shown in Figure 3.10(b). Therefore,

we summarize the mechanism of the ionic-metallic transition as that, both temperature

and the reservoir density increases can cause a more pronounced rise in stoichiometry in

the metallic state than in the ionic state, and consequently, the metallic state has a lower

cohesive energy disadvantage which finally makes it the more stable state.

We re-plot the results of the state with lower free energy in Figure 3.9 to provide a

phase diagram obtained by theory, shown in Figure 3.11. Comparing Figure 3.11 with the

phase diagram obtained from simulation in Figure 3.7 shows that the calculation of the

electrostatic interactions using our theoretical model and approximations is reasonable.

However, the linear relation between the vibrational pressure and the temperature in the

phonon model tends to overestimate the coefficient of thermal expansion of the lattice.

Consequently, the theoretically computed lattice sizes are generally smaller than the ones

obtained in simulations, and hence the number ratio.
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Figure 3.11. The theoretical phase diagram based on the free energy cal-
culations.

3.5. Conclusions and outlooks

Here, we show that an oppositely charged, size-asymmetric binary colloidal suspension

undergoes an ionic-metallic bonding transition as the temperature or the concentration of

small NPs increases. In the ionic phase, the large NPs form an FCC lattice with the small

NPs occupying the interstitial sites. In the metallic state, the small NPs are delocalized

within the crystal while maintaining the integrity of the lattice. This transition is first

order, characterized by a discontinuous lattice expansion and a discontinuous change in

the stoichiometry of the small to large NPs. The calculations of the free energy of the

crystal predict the ionic-metallic transition. We uncover that, with material exchanges,

the driving force for the transition is an enthalpic instead of an entropic effect, as the
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entropy loss by absorbing additional small NPs from the reservoir into the crystal and the

entropy gain from the sublattice melting cancel each other out.

Our work shows that when a colloidal crystal is in contact with a reservoir, the reservoir

condition can affect the metallization of the crystal via the osmotic pressure and the

material exchanges. In the work discussed in this chapter, we raise the chemical potential

of the small NP in the reservoir by increasing their concentration. In experiments, this can

be achieved in more complex ways such as using chemical reactions. Our work suggests

that chemical reactions that control the chemical potential of the components, can be

used to induce or suppress the ionic-metallic transition.

We have assumed a salt-free condition in order to reduce the complexity. Future stud-

ies on systems including additional salt should be needed since such systems are closer to

experiments. Salt concentration can influence the phase behaviors in a charged colloidal

suspension in a fascinating way. It has been reported [103] that gradually increasing

the salt concentration induces transitions of colloidal particles from electrostatically ag-

gregated gels, to energy-driven crystals mediated by the screening of salt ions, back to

the disaggregated state because of overly strong screening, and finally to closely packed

crystals driven by depletion forces. Therefore, we expect that salt would have more com-

plicated competing impacts on the crystals and the ionic-metallic transition.
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3.6. Appendix for Chapter 3

3.6.1. Estimation of the volume fraction of small particles in the reservoir

The goal of this subsection is to estimate the boundary of ϕres
s between the crystal phase

and the gel phase of large NPs. We begin with the estimation of the volume of the crystal

of large NPs in Figure 3.4. Note that we have 80 large particles with a radius of 5σ in a

cubic simulation box with a volume (50σ)3, where σ is the unit length. Assuming all large

NPs aggregate into a close-packed FCC crystal whose packing fraction is known as 0.74,

the crystal formed by 80 large NPs occupies a volume of (80×4/3π×53/0.74 = 56605)σ3.

The rest of the space in the simulation box is considered as the reservoir, whose volume is

(503−56605 = 68395)σ3. Further, we assume the stoichiometry of small to large particles

in the assembled crystal deviates little from 4 : 1, which is the large to small charge ratio.

As a result, the number of small NPs remaining in the reservoir is 80(Ns/Nl − 4). Hence,

we can estimate the volume fraction of small particles in the reservoir as

(3.45) ϕres
s (Ns/Nl) = 80(Ns/Nl − 4)vs/(68395σ

3) ≈ 0.005(Ns/Nl − 4),

where vs = 4σ3/(3π) is the volume of an individual small NP with a radius of 1σ.

3.6.2. Nonlinearity of µres
sp in the reservoir at T = 0.6

Figure 3.12 provides insights in the non-monotonicity of µres
sp at T = 0.6 shown in Figure

3.5. Figures 3.12(a) and 3.12(b) show that the non-monotonicity is not due to the cluster-

ing of small NPs. Figure 3.12(c) reveals that as ϕres
s increases, both the repulsion among

counterions and the attraction between small NPs and counterions increase, resulting in
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the rise of µres
ci and the drop of µres

s . The repulsion among counterions first dominates

at low ϕres
s . Hence, we see that µres

sp increases with ϕres
s . However, after the repulsion

saturates above a certain concentration, µres
sp decreases as the attraction becomes more

dominant.

(a)

(b)

(c)

Figure 3.12. (a) The snapshot of the equilibrium system at T = 0.6 and
ϕres
s = 0.06, with the small NPs shown as pink spheres and the counterions

shown as cyan spheres, where no clear aggregation of small NPs is found,
and (b) the corresponding radial distribution function of small-small NPs,
where a∗ is the position of the first peak, indicating a gas-like distribution
of the small NPs. (c) The changes of individual chemical potentials of
counterions and small NPs, µres

ci and µres
s , with the small NP concentration

at different temperatures.
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3.6.3. Evaluation of the Madelung constants

We evaluate the Madelung constants using the numerical summation of Eqns. (3.13),

(3.14), and (3.15). As the distance of a unit cell to the center increases, its structure

details (charge arrangement) become negligible and contribute little to the summation.

All three summations converge at a cutoff distance of 300 unit cell lengths. Their values

are mainly contributed to by neighboring unit cells.

Dcut/a 1 3 10 30 100 300

Ml 501.688 501.326 501.398 501.401 501.401 501.401

M32f -26.2263 -26.2541 -26.2597 -26.2599 -26.2599 -26.2599

M8c -55.5864 -55.4064 -55.4222 -55.4229 -55.4229 -55.4229

Table 3.1. Direct summation for three Madelung constants with different
cutoff lengths up to 300 lattice constants.

3.6.4. Numerical fitting of A(n)

The numerical fitting is based on the Eqn. (3.39) with γ = 3. We calculate pvib from

pvib = p − pid − pel. Here, p is the overall pressure of the crystal which is obtained from

a series of NVT simulations of the crystal with various n and a (Figure 3.13(a)). Note

that the loop in the p− V curves implies the existence of a phase transition, which is the

ionic-metallic transition in our system. Thus, pI is acquired from the p− V curves before

the loop, and pM is acquired from the curves after the loop. The terms pIid, pMid , pIel, and

pMel are calculated from Eqns. 5, 8, 16, and 27 in the main article, respectively.
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The linear fitting of lnpvib versus lnVc with γ = 3 shown in Figures 3.13(b) and 3.13(c)

support the accuracy of Eqn. (3.39). Figure 3.13(d) shows that both AI(n) and AM(n)

are linear functions of n, as expected that the degrees of freedom of lattice vibration

should linearly grow with the number of particles. Thus, we have

(3.46) βpIvib = AI(n)V
−4
c ,

(3.47) βpMvib = AM(n)V −4
c ,

where the exact expressions for A(n) are given in Table 3.2.

Via Eqns. (3.46) and (3.47), we calculate pvib at other temperatures from the fitting

results at one reference temperature (T = 1.0 in our work). From Eqn. (3.40) and Table

3.2, the vibration contributed chemical potentials are given as

(3.48) βµI
vib =

1.937× 1012V −4
c

Nl

,

(3.49) βµM
vib =

1.849× 1012V −4
c

Nl

.
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(a)

(d)

(b)

(c)

Figure 3.13. The fitting results for the lattice vibrational pressure. (a)
the simulated equilibrium pressure of the crystal with different n and a at
T = 1.0. (b)(c) The linear fitting of lnpvib versus (γ + 1)lnVc with γ = 3,
where the intercepts give the prefactors A(n). (d) Linear fitting results for
A(n) of the ionic and metallic states. The exact values of A(n) from the
fitting are shown in Table 3.2.
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n 4.5 4.75 5 5.25 5.5

lnAI 31.63344 31.66445 31.69496 31.7319 31.76534

AI(n) AI(n) = 1.97× 1013 + 7.749× 1012n

lnAM 31.87428 31.89058 31.92219 31.94556 31.97324

AM(n) AM(n) = 3.605× 1013 + 7.395× 1012n

Table 3.2. A(n) of the ionic and metallic states for different stoichiometries
n, from the fitting results in Figure 3.13.

3.6.5. Osmotic simulations of the colloidal crystals

Figure 3.14 shows the details of how we obtain the equilibrium between the crystal and

the reservoir simulations. First, we simulate the reservoir under given {T, ϕres
s } to obtain

the osmotic pressure pres and the chemical potential of neutralized small NP pairs µres
sp ,

as shown in Figure 3 in the main article. Then, we simulate the crystals with different

small to large number ratio (stoichiometry) n in the NPT ensemble with p = pres. After

equilibration, the lattice constant is calculated via ensemble averaging, and the chemical

potential of neutralized small NP pairs inside the crystal (µcry
sp ) is calculated by the real

particle method. Two curves, µcry
sp on the left y-axis and a on the right y-axis are plotted

with respect to n in Figure 3.14. The intersection between the horizontal line µ = µres
sp

on the left y-axis and the µcry
sp curve gives us the equilibrium stoichiometry neq where the

chemical equilibrium is reached between the crystal and the reservoir. The intersection

between the vertical line n = neq and the a curve gives us the equilibrium lattice constant

aeq.
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(a)

(Figure continues)
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(b)

(Figure continues)
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(c)

Figure 3.14. The NPT ensemble simulation results for how µcry
s and a

of the colloidal crystals change with the stoichiometry n under different
temperatures and reservoir concentrations. (a) T=0.6, (b) T=0.8, and (c)
T=1.0.
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3.6.6. High-temperature limit in the lattice vibrational term

If we use the high-temperature limit βh̄ω ≪ 1 in the calculation of the lattice vibrational

free energy, we get

βpvib =
γ

V

∫ ωm

0

(
1

2
βh̄ω1/γ +

βh̄ω1/γ

eβh̄ω − 1

)
NcNdof

γω
1/γ
m

dω

≈ γNdof

Vc

{
βh̄ωm

2(γ + 1)
+ 1

}
≈ γNdof

Vc

(3.50)

This gives the classic result that the thermal pressure is inversely proportional to the

volume in the high-temperature limit [90], akin to the ideal gas law. However, this

relation is not found in our results. Therefore, we believe the high-temperature limit is

not reached in our system.
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CHAPTER 4

Electric-Field-driven dynamics∗

4.1. Introduction

In Chapters 2 and 3, we have demonstrated the existence of the superionic state in

charged colloidal crystals, exploring the transitions to this state induced by temperature

variations and particle concentration in the solution. These findings lay the groundwork

for utilizing charged colloidal crystals as superionic materials. Now, our focus shifts to

examining the dynamic behavior of colloidal crystals under the influence of an external

electric field.

Electric-field-induced phenomena in charged colloidal systems have garnered signif-

icant attention due to their fascinating behavior and potential applications in various

scientific and technological fields. When an external electric field is applied to a suspen-

sion of charged colloidal particles, a range of intriguing phenomena emerge. One such

phenomenon is electrophoresis [108], where charged particles undergo directed motion in

response to the electric field. Electrophoresis is driven by the electrostatic forces exerted

on the particles, causing them to migrate toward the oppositely charged electrode. This

phenomenon has been extensively studied and exploited for applications such as particle

separation, microfluidics, and drug delivery systems [109].

∗This chapter is primarily based on the published work [107] of Yange Lin and Monica Olvera de la Cruz,
Colloidal superionic conductors, PNAS 120.15 (2023): e2300257120, with modified notations and
extended details to comply with the structure of this work.
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Another remarkable phenomenon observed in charged colloidal systems under electric

fields is lane formation [110, 111, 112, 113]. When subjected to a sufficiently strong electric

field, charged particles can self-organize into parallel lanes within the suspension. The

formation of lanes is a consequence of the interplay between Coulomb interactions among

the particles and the screening effects of the surrounding medium. The phenomenon has

been observed in various systems, including colloidal suspensions, liquid crystals, and even

biological systems. Lane formation has implications in areas such as pattern formation,

particle sorting, and the design of functional materials.

In this study, we investigate the behaviors of a size-asymmetric charged colloidal crys-

tal under an external electric field using molecular dynamics (MD) simulations. The

phenomenon of electric-field-induced superionicity has been observed in various materials

[114, 115, 116, 117]. Here, we aim to explore similar transitions and other field-driven

phenomena within colloidal crystals, such as the formation of lanes through Coulomb

interactions, in contrast to the Debye-H”uckel screened interactions typically used in lane

formation studies [110, 111, 112, 113]. Furthermore, we conduct an in-depth analysis of

charge transport, including ion mobility, resistivity, and the underlying transport mech-

anisms. Specifically, we quantify the dissipation, which reflects the heating of the system

and relates to its thermal stability, as well as the fluctuation of ion currents, which in-

dicates the stability of the output. As the applied electric field strengthens, we observe

an increase in dissipation alongside a decrease in the relative fluctuation of currents. To

characterize this trade-off relationship, we employ the thermodynamic uncertainty rela-

tion [118, 119, 120, 121, 122, 123, 124, 125, 126]. By examining these aspects, we gain
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valuable insights into the charge transport mechanisms in colloidal superionic conductors

and their implications for thermal stability and electrical performance.

4.2. Langevin dynamics

4.2.1. Langevin equations

In previous chapters, we employed Langevin dynamics to numerically implement an im-

plicit solvent treatment, but we have yet to provide an introduction to this method. In

this chapter, we continue to utilize Langevin dynamics and the implicit solvent treatment

in our simulations. However, it is necessary to review the fundamentals of Langevin dy-

namics and the expressions for dissipation and work derived from the Langevin equations

[127, 111], as these concepts are essential for our subsequent discussions.

When we treat the solvent as implicit, we disregard the degrees of freedom of solvent

molecules. Instead, we consider the motions of solvent molecules as unpredictable random

collisions with the larger particles explicitly included in the dynamics, often referred to as

Brownian particles. These collisions are responsible for the thermal fluctuations and the

stochastic nature of the system’s dynamics. Moreover, when a Brownian particle moves

in a certain direction, it encounters more collisions from that direction, leading to friction

that hampers its movement. This friction, which causes the particle to lose kinetic energy

that dissipates as heat into the medium, is known as the dissipative force. Mathematically,

the dynamics of the system are described by a set of coupled underdamped Langevin

equations:
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(4.1) ṙrri = vvvi,

(4.2) miv̇vvi = −∇iU +FFF ext
i − γivvvi +

√
2Diξξξi.

Here, the dots indicate time derivatives. The first term on the right-hand side, −∇iU ,

represents the interparticle force. The second term, FFF ext
i , accounts for the external force

applied to the system, which in this case is given by FFF ext
i = qiEEE, where EEE is the applied

electric field. The first and second terms correspond to Newton’s second law. Following

that, the third term on the right-hand side, −γivvvi, denotes the dissipative force, which is

directly proportional to the velocity of the particle. The damping coefficient γi = 6πη0Ri

is derived from Stokes’ law, with η0 representing the viscosity of the medium. Finally, the

fourth term on the right-hand side, ξξξi, represents Gaussian white noise that incorporates

thermal fluctuations. It possesses a mean value ⟨ξξξi⟩ = 0 and a variance ⟨ξξξi(t)ξξξj(t′)⟩ =

2DiIIIdδijδ(t− t′), where ⟨...⟩ denotes the ensemble average, Di is the diffusion coefficient,

IIId is the identity matrix in a d-dimensional space, and δij is the Kronecker delta function.

4.2.2. Fluctuation-dissipation theorem

In order to sustain the continuous and erratic motion of Brownian particles, there is a

relationship between the energy input (gain) from the medium to the particles through

thermal fluctuations and the energy output (loss) from the particles to the medium. In

the simplest system without external forces or interparticle interactions, such as a single-

particle system, the fluctuation and dissipation must be in balance since they arise from
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the same source—random collisions with surrounding molecules. This balance between

fluctuation and dissipation is governed by the fluctuation-dissipation theorem (FDT) [128].

From Eqn. (4.2), the probability distribution function of particle velocity satisfies the

Fokker-Planck equation:

(4.3) ∂P (v, t)

∂t
= − 1

m

∂

∂v

[
(−∇U + Fext − γv)P (v, t)

]
+

D

m2

∂2

∂v2
P (v, t).

In equilibrium or in the steady state, ∂P/∂t = 0. By setting −∇U = 0 and FFF ext
i = 0, we

solve (4.3) and obtain:

(4.4) P ss(v) =
1√

2πD/(mγ)
exp

(
− mγv2

2D

)
,

where ss denotes steady state. The stationary velocity distribution must coincide with the

Maxwellian distribution:

(4.5) P ss(v) ∝ exp
(
− mv2

2kBT

)
,

where kB is the Boltzmann constant. By comparing Eqns. (4.4) and (4.5), we find:

(4.6) D = γkBT.

This relationship is known as the Einstein relation.

Using Eqn. (4.6), the Langevin equation becomes:

(4.7) miv̇vvi = −∇iU +FFF ext
i − γivvvi +

√
2kBTγiξξξi.
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4.2.3. Dissipation, entropy production, and work

The system exchanges energy with the surrounding medium through the friction term

−γvvv and the thermal noise term
√
2kBTγξξξ. The dissipation over a time interval T is

defined as the amount of energy flowing from the system to the reservoir during this time

and can be expressed as [127]:

(4.8) Q =
∑
i

∫
T
(γivvvi −

√
2kBTγiξξξi) · drrri.

Here, the symbol ”·” represents the Stratonovich product. By using equations (4.1) and

(4.7), we can write:

(4.9) drrr(t) = vvv(t)dt+ 1

2m

[
FFF (t)(dt)2 − γvvv(t)(dt)2 +

√
2kBTγξξξ(t)dt

]
,

where FFF = −∇U + FFF ext represents the force acting on a particle. Consequently, the

average dissipation is given by:

⟨Q⟩ =
∑
i

∫ T

0

⟨drrri(t) · (γivvvi(t)−
√
2kBTγiξξξi(t))⟩

=
∑
i

∫ T

0

〈(
vvvi(t)dt+

1

2mi

√
2kBTγiξξξi(t)dt+O((dt)2)

)
· (γivvvi(t)−

√
2kBTγiξξξi(t))

〉

=
∑
i

∫ T

0

(
γi⟨v2i ⟩ − dkBTγi/mi

)
dt,

(4.10)
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where ⟨ξξξ2(t)⟩ = d represents the dimensionality of the space. In the third equality of

equation (4.10), we have used the fact that the thermal force ξξξ is independent of other

variables and has a mean of zero.

In a steady state, there is no average change in entropy in the system over a long

period of time. Therefore, the total entropy production solely comes from the reservoir.

Since the reservoir is assumed to be at a constant temperature, the entropy production

(EP) is simply given by ⟨Q⟩/T . Consequently, the mean (EP) rate is:

(4.11) ⟨Σ̇⟩ ≡ ⟨Q̇⟩/T =
∑
i

(
γi⟨v2i ⟩/T − dγikB/mi

)
.

It is worth noting that inside the integral is the difference between the kinetic energy

of the particles and their thermal energy. In equilibrium, when there are no external

fields, these two quantities should be equal, resulting in zero dissipation and zero entropy

production.

When an external field is applied, the motion of the particles is driven and eventually

reaches a non-equilibrium steady state (NESS). Since the particles generally gain more

kinetic energy when driven, they experience larger frictions that the thermal noise cannot

fully cancel out. As a result, the expression in equation (4.10) is no longer zero but

positive. Therefore, to maintain the system in NESS, we need to continuously input

energy into the system through the external force to compensate for the dissipation. The

amount of input energy is given by:

(4.12) U(T ) =
∑
i

∫
T
FFF ext

i · drrri.
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Apart from dissipation, the remaining input energy turns into the work used to drive

the particles’ motion. By using equations (4.8) and (4.12), the work can be written as:

(4.13) W ≡ U −Q =
∑
i

∫
T
(miv̇vvi +∇iU) · drrri.

Here, miv̇vvi represents the total force on a particle. Thus, the first term in equation (4.13)

accounts for the work done by particle displacements, which are actually conducting

charges. The second term, ∇iU , is the internal force with a negative sign, accounting for

the energy stored in the structural distortion as a response to the applied field [111].

We have already discussed one limiting case when the external field goes to zero and

the system returns to equilibrium, the energy input, the dissipation, and the work are

all zero on average. In the other limiting case, as the field increases sufficiently, the

interparticle force −∇U becomes negligible. In this case, the steady-state velocity is

solely determined by the external force, given by v = F/γ. Substituting this expression

for velocity into Eqn. (4.11) and calculating the work rate Ẇ = U̇ − Q̇, we find:

(4.14) Ẇ = dkBT
∑
i

γi/mi.

Therefore, the work rate is bounded by the thermal energy. This can be understood

as follows: the external field converts non-directional, stochastic thermal energy into

useful energy that drives particles in the desired direction. The cost associated with this

conversion is dissipation. As the field becomes stronger, the percentage of thermal energy

being converted increases, but it can never exceed 100%.
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4.3. Methods

All of our MD simulations are done using the LAMMPS software package [69, 94, 95,

96, 97, 98, 129]. Images of simulation results are created using VMD [99].

4.3.1. Simulation setup

We simulate a binary colloidal crystal composed of large charged NPs held on the lattice

points together by oppositely-charged small NPs in salt-free conditions. The box contains

4 × 4 × 4 unit cells with periodic boundary conditions, mimicking bulk crystal. Large

and small NPs have the radii RL = 5 nm and RS = 1 nm, respectively, and a mass ratio

mL/mS = 125. The charges are set to be qL = −80 e and qS = +10 e. The small-to-large

number ratio is kept at 8 : 1 to maintain charge neutrality. NPs interact with each other

via hardcore interactions and Coulomb interactions. The initial lattice is arranged in a fcc

structure but is deformable during the isothermal-isobaric (NPT) ensemble simulations.

The external pressure is set to zero [70], hence the cohesion of the crystal comes from the

attractions between large and small NPs only. A complete list of simulation parameters

can be found in Table 4.1 in the Appendix section of this chapter. The Coulomb potential

is calculated by the particle-particle particle-mesh (PPPM) method with a precision of

5 × 10−4, and the cutoff distance for PPPM ranges from 20σ ∼ 30σ, depending on the

crystal size.

As shown in Figure 4.1, we use aaa, bbb, and ccc to represent the three primitive vectors of the

lattice in the x, y, z-directions, respectively. A uniform electric field EEE is applied along the

x-direction which drives the large and small particles towards opposite directions, whose

currents are marked as jjjL and jjjS. The dynamics of the system are described by a set
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of coupled underdamped Langevin equations given as Eqns. (4.1) and (4.2). We do not

consider the temperature dependence of the medium viscosity as well as the hydrodynamic

interactions and hence can treat γi as isotropic constants.

  a, E

c

b

j
L

j
S

Figure 4.1. Coarse-grained model of a fcc unit cell in the binary colloidal
superlattice: large NPs in pink and small NPs in cyan. Large NPs on
the edge centers are set as partly transparent for better visualization. The
primitive vectors aaa, bbb, and ccc are shown in the lower left. A uniform electric
field EEE is applied along aaa during the MD simulations. jjjL and jjjS are the
induced currents of large and small NPs.

4.3.2. Equilibration and sampling

The system is prepared by placing large NPs on a 4 × 4 × 4 fcc lattice sites with small

NPs filled in the lattice voids without strong overlaps. Periodic boundary conditions
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are implemented. The crystal is thermalized and pressurized in the isobaric-isoenthalpic

(NPH) ensemble using Langevin dynamics, which is equivalent to the isothermal-isobaric

(NPT) ensemble but with stochastic thermal noise. The pressure is first set as 260 kPa

to keep the crystal compact for 100τ . In this work, we set τ = 2.85 × 10−10 s. Then,

the pressure is gradually reduced to zero in another 200τ . After equilibrating the crystal

at zero pressure for 5000τ , an external force F ext
i = qiE is added to each particle along

the x-direction, and the system is further run for 15000τ . The simulation box is set as

triclinic and thus is able to deform all the time.

We start sampling 2500τ after the addition of external forces, at which time the system

has already reached the NESS (see Figure 4.17 in the Appendix section of this chapter).

The displacement of each particle along x-direction in the following 5000τ is measured.

The x-velocity vx, its square v2x, and the square of acting force F 2
i are sampled every 5τ

for 2000 times.

4.4. Results and Discussions

4.4.1. Field-induced transitions.

Before applying the electric field, we examine the thermal expansion of the crystal. As

shown in Figure 4.2, the increasing temperature can cause an isotropic expansion of

the crystal. The expansion is not always continuous, but has a discontinuous jump at

Tc ≈ 320K. It characterizes a first-order transition from the ionic state to the superionic

state, as shown in previous chapters, regardless of the presence of electrostatic screening

[32, 77].
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Figure 4.2. The equilibrium lattice constant under different temperatures
in the NPT simulations without an electric field. The lattice expands
isotropically in three dimensions with the increasing temperature, and an
ionic to superionic transition is observed at Tc ≈ 320K.

Below the transition temperature, the application of an electric field can induce the

ionic to superionic transition. Figure 4.3(a) shows that in the NESS and at T = 300K,

how the lattice constants in three dimensions change with the field intensity. At E ≈

1mV/nm, a discontinuous expansion similar to that in Figure 4.3(a) is observed, indi-

cating an ionic to superionic transition. Figure 4.3(b) shows the hysteresis curves of the

field-induced ionic to superionic transition. Interestingly, when we prepare the crystal

in the superionic state at E = 2mV/nm and gradually decrease the field intensity, the

superionic state persists even when E reaches zero. This reflects a pronounced inertial

effect of the system, akin to a well-known phenomenon that flowing suppresses the freez-

ing point of water[114]. Nonetheless, the transition is still switchable when we reduce E
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at a much slower speed or wait long enough after E reaches zero. Similar field-induced

discontinuous crystal expansions and hysteretic behaviors have been observed in atomic

insulators [114]. Notably, the crystal remains cubic and isotropic right after the ionic to

superionic transition induced by an anisotropic field. It is because the maintenance of a

symmetric structure helps to maximize the cohesive energy of the lattice.

  

(a) (b)

Figure 4.3. Lattice deformations and structural transitions induced by the
electric field in the MD simulations. (a) Values of three lattice constants
in the NESS under different electric field intensities E at T = 300K. a =
|aaa|, b = |bbb|, and c = |ccc|. While the lattice maintains orthogonal in the
whole range, it is gradually stretched along the x-direction where the field
is applied. (b) The hysteresis curves for the field-induced sublattice melting
in the weak field regime, where both increasing and decreasing fields vary
in a rate of dE/dt = 1.19× 106 V/(nm · s).

This symmetry, however, is broken by further enhancing the field. The lattice de-

forms from cubic to tetragonal, where it expands along the field direction while remaining

unchanged in the other two directions. Meanwhile, small NPs start to move in lanes for

faster transport. Similar lane formations have been reported in various charged systems

[41, 110, 111, 130, 112], except that our system has no constant volume and it is the

attraction between the opposite fluxes that keeps the system finite. Although the lattice
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of large NPs still drifts as a whole, the magnitude of the anisotropic stretch increases

rapidly with the field strength until the crystal is destroyed. Due to the application of

the field, we do not observe any dynamically arrested state throughout our simulations,

such as low-density colloidal Wigner glass or electrostatic gels [88].
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       ionic
E=0.6mV/nm

4ρ
0

2ρ
0

1ρ
0

a

b
c

superionic
E=2mV/nm

     laning
E=11mV/nm

Figure 4.4. Isosurfaces of the probability densities of small NPs at different
isovalues. The isosurfaces at 2ρ0 and 4ρ0 present the regimes where the
density of small NPs is no less than 2ρ0 and 4ρ0, respectively, where ρ0 is
the mean density of small NPs. The plotting is three-dimensional. The
lattice is placed almost parallel to the xz-plane because it is the best angle
to visualize and compare the patterns of small NPs.
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In the ”ionic-superionic-laning” transitions, the distribution of small NPs inside the

lattice (strictly speaking, the free space inside the lattice) goes from inhomogeneous, to

homogeneous, and back to inhomogeneous. Figure 4.4 shows isosurfaces of the probability

densities [14] of small NPs at increasing isovalues 1ρ0, 2ρ0, and 4ρ0, where ρ0 ≡ NS/Vc is

the mean density of small NPs in each structure. Here, NS = 8 is the number of small NPs

in one unit cell and Vc is the volume of a unit cell. We evaluate Vc = abc since the lattice

remains orthogonal, where a, b, and c are the lattice constants in x, y, and z-directions,

respectively. In the ionic state, small NPs are highly populated at the interstitial sites

of the lattice, which are the 32f Wyckoff positions [71]. In contrast, the superionic state

has a uniform small NP distribution and very few high-density regimes. The laning state

differs from the previous two in that, on one hand, the free space is ergodic for small

NPs, as seen in the 1ρ0 isosurface, and on the other hand, small NPs are not uniformly

distributed, as seen in the 2ρ0 isosurface.

To quantify the homogeneity of the distribution of small NPs, we measure their trans-

lational entropy, which is a physical quantity widely used in characterizing structural

transitions [131, 132, 133, 134, 135], defined as [136, 137]

(4.15) Stran/kB = −2πρ0

∫ ∞

0

[g(r)lng(r)− g(r) + 1]r2dr.

Here, g(r) is the radial distribution function between small and small NPs (see Figure 4.18

in the Appendix section of this chapter). Stran = 0 means an utterly even distribution

in the crystal including the hard-cores of large NPs. The change in Stran (Figure 4.5)

captures the transitions between states. The ionic to superionic transition is indicated by
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a dramatic increase in Stran, since in the superionic state there are more accessible trans-

lational degrees of freedom (DOF) for small NPs. Afterward, Stran first slowly rises up

and then drops with enhancing field intensity. This turning point signals lane formation,

as small NPs start to lose their translational DOF in y and z directions.

Figure 4.5. The change of translational entropy of small NPs in the NESS
with the field intensity. (Inset) A zoom-in view of the turning point.

4.4.2. Conductive behavior.

The dynamic properties can be described by the mobilities of particles calculated as

µ = ⟨v⟩/E, where ⟨v⟩ is the mean drift velocity in the NESS. As seen in Figure 4.6, the

mobilities of large and small NPs both grow monotonically with the field intensity and

exhibit a sharp increase when the superionic transition occurs. Sodium ions Na+, as a

reference, have a mobility of 5× 10−8 m2s−1V−1 in water [138].The validity of the relation
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µi ∝ F ext/(γE) ∝ qi/Ri is examined in the inset graph and is proved by the fact that the

ratio α = (µLRLqS)/(µSRSqL) goes to 1 after the system enters the superionic state.

Figure 4.6. The mobilities of large and small NPs under different field
intensities at T = 300K. (Inset) The ratio α = (µLRLqS)/(µSRSqL) at
different E.

To quantify the field intensity dependency of ⟨v⟩, we consider a one-dimensional trans-

port model. Similar models have been used to classically describe electron conduction in

periodic systems such as conjugate π bond systems [139]. As the crystal approaches

the laning state, linear transport channels parallel to the field direction (x-direction) are

formed. When a small NP moves in these transport channels, it encounters periodic

steric repulsions from large NPs (Figure 4.7(a)), which become the energy barriers in its

diffusion. The height of the energy barrier, ∆U , depends on the minimal distance, rmin,

between the small NP and the large NP (Figure 4.7(b)). Since the lattice constants along
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y and z-directions in the superionic and laning states are field independent (16.2 nm, see

Figure 4.3(a)), we consider rmin to be a constant and obtain ∆U = 1.386 × 10−20 J via

the WCA potential used in our simulations. The original symmetric diffusion energy

landscape is tilted by the applied electric field, as shown in Figure 4.7(c). The width

of the energy barrier, d, can be physically understood as the distance in the x-direction

over which the steric repulsion occurs. Consequently, the energy barriers for forward and

backward fluxes become ∆U − qEd/2 and ∆U + qEd/2, respectively. Therefore, using

Arrhenius’s law we have

(4.16) ⟨v⟩ ∝ e−(∆U−qEd/2)/kBT − e−(∆U+qEd/2)/kBT .
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Figure 4.7. (a) A schematic model showing that a small NP (cyan) moves
in a linear diffusion channel parallel to the x-direction. Transparent cyan
spheres mark the positions where the steric repulsion between the small NP
and large NPs (pink) maximizes. (b) The side view (yz-plane) of the model
showing that the height of the energy barriers is determined by the minimal
distance between the small NP and large NPs and thus can be evaluated
by the lattice constant in the y or z-direction. (c) The potential energy
landscape for the drift of small NPs under an external field.
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We fit (4.16) to the relative drift velocity, ⟨v⟩ = ⟨vS⟩ − ⟨vL⟩, under different field

strengths obtained in the simulations, with ∆U fixed at 1.386 × 10−20 J (Figure 4.8(a)).

The agreement validates the model, despite its simplicity. From (4.16) we have d⟨v⟩/dT >

0 when (∆U − qEd/2)/T > 1 and vice versa (see Section 4.6.1 in the Appendix section of

this chapter). Thus, the field enhancement should gradually change d⟨v⟩/dT from positive

to negative. This prediction is verified by the resistivity of the system. The resistivity is

defined as ρ = E/⟨j⟩, where the charge current is given as

(4.17) j =
∑
i

qivi.

Thus, on average ⟨j⟩ = NSqS⟨v⟩. In Figure 4.8(b) we plot the resistivity as a function of E

at T = 300K and T = 338K, with analytical curves calculated via the fitted (4.16). Both

simulation and analytical results show a trend that the crystal has a lower resistivity at a

higher T , but the dependence on T weakens as the field gets stronger. It can be physically

understood that [140] in the weak field regime, thermal agitation effectively helps small

NPs overcome activation energy barriers, resulting in a resistivity reduction. However, in

the strong field regime, the external force is sufficiently large to drive small NPs through

energy barriers. Hence, the current enhancement brought by thermal agitation becomes

negligible. Instead, thermal agitation impedes the current as stronger lattice vibration

scatters the directional motion of small NPs, akin to electron-phonon interactions in

metals.
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(a) (b)

Figure 4.8. (a) The natural logarithm of the relative drift velocity, ln⟨v⟩,
under different field strengths. The circles are the numerical data. The
dashed line is the best analytical fitting of (4.16) with fixed ∆U = 1.386×
10−20 J, which gives d = 1.2 nm and a prefactor 3.32. (b) The resistivity of
the system at different E at T = 300K and T = 338K. The circles are the
numerical data while the dashed lines are the analytical results calculated
by the fitted (4.16).

4.4.3. Dissipation and energy conversion efficiency.

It is of significant interest to study the dissipation of a field-driven system. As energy flows

into the system via the field, part of it is converted to work and the rest is dissipated into

the reservoir due to friction. Thus, via dissipation, we can calculate the energy conversion

efficiency, known as the ratio of work done and the total input energy. For superionic

conductors, dissipation is the heat released during operation and hence affects their safety

and thermal stability.
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In Section 4.2.3, we have discussed the energy input, the dissipation, and the work.

The energy input possesses the expression

(4.18) U(T ) =
∑
i

∫
T
FFF ext

i drrri =
∑
i

∫
T
F ext
i dxi,

and the dissipation is defined as

(4.19) Q =
∑
i

∫
T
(γivi,x −

√
2kBTγiξi,x) · dxi,

or in the ensemble average

(4.20) ⟨Q⟩ =
∑
i

∫
T
(γi⟨v2i,x⟩ − γikBT/mi)dt.

Combining (4.2), (4.18), and (4.19), the work done to the system by the field is expressed

as

(4.21) W ≡ U −Q =
∑
i

∫
T
(miv̇vvi +∇iU) · drrri.

From (4.18) and (4.20), the average rates of energy input and dissipation are given as

(4.22) ⟨U̇⟩ =
∑
i

F ext
i ⟨vi,x⟩,

(4.23) ⟨Q̇⟩ =
∑
i

(γi⟨v2i,x⟩ − γikBT/mi),

respectively.
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(a) (b)

Figure 4.9. (a) Rates of dissipation and energy input of the 256 large NPs
and 2048 small NPs in our simulation system, respectively, as a function
of E. The work rate can be inferred from the discrepancy between two
corresponding curves. (b) Energy conversion efficiency of the system η as a
function of E.

Figure 4.9(a) presents ⟨U̇⟩ and ⟨Q̇⟩ in the NESS of large and small NPs in our system.

While large NPs are stably converting the input energy into work at a certain rate, small

NPs are much more random and less efficient, since the thermal noise has a pronounced

effect on smaller particles. Such randomness creates a significant statistical error in our

sampling of v2S,x. Therefore, in Figure 4.9(b), we plot the energy conversion efficiency,

η ≡ ⟨W⟩/⟨U⟩ = 1 − ⟨Q̇⟩/⟨U̇⟩, only at the values when the electric field is strong enough

to overcome the thermal fluctuations. With the errors reduced by enhancing the field,

η stabilizes at around 0.2 in the strong field regime, showing that our system is highly

dissipative.
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4.4.4. Thermodynamic uncertainty relation (TUR) and transport efficiency

The stochastic nature of the dynamics of small NPs is also reflected by their less precise

current, compared to that of the large NPs (Figure 4.10. The current precision is defined

as var(j)/⟨j⟩2 and var(j) = ⟨j2⟩−⟨j⟩2. Notably, currents become more precise in stronger

fields, as var(j) is governed by temperature and ⟨j⟩ is governed by the field. Yet, this

comes with a cost of larger dissipation as seen in Figure 4.9(a). The trade-off between

dissipation and current precision can be described by the TUR recently discovered in far-

from-equilibrium statistical mechanics [118, 119, 120, 121, 122, 123, 124, 125, 126]. For

Markovian systems such as systems driven by overdamped Langevin dynamics, the TUR

states that the current precision is lower-bounded by the inverse of entropy production

Σ = Q/T as [118, 119, 120, 121, 122, 123]

(4.24) var(j)
⟨j⟩2

≥ 2kB

⟨Σ̇⟩
.
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Figure 4.10. Currents of large and small NPs as well as their precision as
a function of E.

In systems governed by underdamped Langevin dynamics, such as our system, parti-

cles are more diffusive. Hence, a smaller bound is derived as [124, 125, 126]

(4.25) var(j)
⟨j⟩2

≥ 2

4⟨Υ⟩+ 9⟨Σ̇⟩/kB
.

Υ is the so-called dynamical activity, defined as

(4.26) ⟨Υ⟩ =
∑
i

(
⟨F 2

i,x⟩
kBTγi

− 3
γi⟨v2i,x⟩
kBT

+ 4
γi
mi

)

where Fi = −∇iU+F ext
i is the total acting force of particle i. While Σ quantifies the time-

irreversibility of currents, Υ quantifies their time-reversibility [124, 125, 126] and measures

the tendency of non-directional symmetric movement of particles [125]. In other words, Υ



139

quantifies the magnitude of thermal motion. As expected, small NPs have a much greater

dynamical activity than large NPs (Figure 4.11).

Figure 4.11. Per-particle dynamical activity, ⟨Υ⟩. The abnormal increase
in ⟨Υ⟩ at large E is attributed to simulation errors, where particles start to
strongly overlap and some tremendous values of Fi are sampled. To reduce
these errors, a smaller simulation timestep should be used (see Figure 4.19
in the Appendix section of this chapter for details).

These reported TURs are valid only in small or ideal systems. In real biochemical

systems, the current fluctuations are usually several orders of magnitude larger than the

theoretical bounds [141]. How to improve the bounds in the theoretical calculations to

more accurately describe real systems is still under exploration. Here, we derive a more

precise estimate of the relationship between the entropy production rate and the current

precision, using the fact that both can be written in terms of velocity statistics. As the



140

thermal noise is the only source of stochasticity in the dynamics and its significance has

been shown in previous results, we approximate var(v) =
√
kBT/m. Thus, via (4.23) the

EP rate becomes

(4.27) ⟨Σ̇⟩ = Nγ

T
[⟨v2⟩ − var(v)] = Nγ⟨v⟩2

T
,

and via (4.17) the current precision becomes

(4.28) var(j)
⟨j⟩2

=
var(v)
N⟨v⟩2

,

and consequently,

(4.29) var(j)
⟨j⟩2

⟨Σ̇⟩ = var(v)
⟨v⟩2

γ⟨v⟩2

T
=
γkB
m

.

Compared to (4.24), (4.29) replaces the constant 2 by the ratio of the damping strength

and the inertia, γ/m. More details of the derivation and more discussions are in Section

4.6.3 in the Appendix section of this chapter.

Figure 4.12 shows the comparisons among the current precision obtained by simula-

tions, the overdamped [118, 119, 120, 121, 122, 123] and underdamped [124, 125, 126] TUR

bounds from the literature ((4.24) and (4.25), respectively), and the bound we obtained

in (4.29) for both the large and the small particles. In our system, we set γL/mL = 5

and γS/mS = 125. Thus, the bounds given by (4.29) are larger than the overdamped

TUR (and the underdamped TUR). Nevertheless, our derived (4.29) still nicely bound

the current precision, suggesting that it is important to include system parameters to

obtain accurate bound values.
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Figure 4.12. Comparison of the current precision, the overdamped bound
((4.24)), the underdamped bound ((4.25)), and the bound given by (4.29)
for large and small NP currents, respectively. The discontinuity in curves of
the overdamped bound and the bound given by (4.29) for small NP currents
is because some data points are negative due to statistical errors and are
out of the range of the plot.

Finally, in Figure 4.13 we examine the transport efficiency, which measures how close

the current precision is to its optimal value, defined as [142] χ = bound/precision. It is

seen that large NPs have higher efficiencies in producing a precise current than small NPs,

and all χ increase with E but saturate in the laning phase. One may conclude that the
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more deterministic (or directed) the dynamics are, the more efficient the transport is until

it reaches its limiting value when the system transitions to the laning state. Although

the realization of the laning state requires strong electric fields which risks the melting of

the large NP crystal, it is tempting to claim that the laning state is a better conductive

state in terms of higher diffusion coefficients, lower resistivity, stable energy conversion,

and more precise output currents than the superionic state.

Figure 4.13. Transport efficiency of large and small NP currents as func-
tions of E.

4.5. Conclusion

A size-asymmetric binary charged colloidal crystal in response to an applied electric

field undergoes a sharp ionic to superionic transition with a dramatic improvement in
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conductive performance, followed by a smoother transition to the laning state where the

crystal deforms from cubic to tetragonal. In the laning state, the drift velocity returns to

an Arrhenius law exponential relation with the field intensity, and the transport efficiency

reaches the maximum. These findings suggest the possible existence of switchable field-

induced-superionicity in charged colloidal crystals and widen our knowledge of charge

transport mechanisms in solid-state systems.
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4.6. Appendix for Chapter 4

4.6.1. Temperature dependence of the drift velocity

The temperature dependence of the drift velocity, via Eqn. (4) in the main text, is given

as

(4.30)
d⟨v⟩
dT =

1

T

[
f
(∆U − qEd/2

T

)
− f

(∆U + qEd/2

T

)]
,

where f(x) = xe−x and is plotted as

2 4 6 8 10
x

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

f(x)

Figure 4.14. The plot of f(x) versus x, which maximizes at x = 1.

It is seen that xe−x monotonically increases before x = 1 and monotonically decreases

afterwards. Hence, when (∆U − qEd/2)/T > 1, d⟨v⟩/dT > 0. When (∆U + qEd/2)/T <

1, d⟨v⟩/dT < 0. When (∆U − qEd/2)/T < 1 and (∆U + qEd/2)/T > 1, it is likely to

have d⟨v⟩/dT < 0 due to the asymmetric shape of f(x). Therefore, in the main text,

(∆U − qEd/2)/T > 1 is used as an approximate condition for d⟨v⟩/dT > 0.
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4.6.2. Dynamical activity and thermodynamic uncertainty relation

For simplicity, we consider a one-dimensional system, although generalization of these

calculations to multiple dimensions is easy. In stochastic dynamics, the probability of

observing a trajectory ΓΓΓT = {xxx(t), vvv(t)} from a starting point (xxx(0), vvv(0)) in the phase

space satisfies [124, 125, 126]

(4.31) P(ΓΓΓT ) ∝ exp(−A[ΓΓΓT ]),

where A[ΓΓΓT ] is an Onsager-Machlup action functional and expressed as

(4.32) A[ΓΓΓT ] =
∑
i

∫ T

0

dt
[

1

4kBTγi
(miv̇i(t) + γivi(t)− Fi(t))

2 − γi
2mi

]
.

For the time-reversed trajectory Γ̄ΓΓT = {x̄xx(t), v̄vv(t)} = {xxx(T − t),−vvv(T − t)}, the action

functional becomes

A[Γ̄ΓΓT ] =
∑
i

∫ T

0

dt
[

1

4kBTγi
(mi ˙̄vi(t) + γiv̄i(t)− F̄i(t))

2 − γi
2mi

]

=
∑
i

∫ T

0

dt
[

1

4kBTγi
(miv̇i(T − t)− γivi(T − t)− Fi(T − t))2 − γi

2mi

]

=
∑
i

∫ T

0

dt
[

1

4kBTγi
(miv̇i(t)− γivi(t)− Fi(t))

2 − γi
2mi

]
.

(4.33)

The dynamical activity, Υ, and entropy production rate, Σ̇, respectively, characterize

the time-symmetric and time-antisymmetric components of the action functional (more

strictly, the action minus its functional measure [143], A[ΓΓΓT ]−
∑

i

∫
T dt

m2
i v̇i(t)

2

4kBTγi
), which
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is to say

(4.34) A[ΓΓΓT ]−
∑
i

∫ T

0

dt
m2

i v̇i(t)
2

4kBTγi
= −T (Υ[ΓΓΓT ]/4 + Σ̇[ΓΓΓT ]/(2kB)),

(4.35)

A[Γ̄ΓΓT ]−
∑
i

∫ T

0

dtm
2
i
˙̄vi(t)

2

4kBTγi
= −T (Υ[Γ̄ΓΓT ]/4 + Σ̇[Γ̄ΓΓT ]/2) = −T (Υ[ΓΓΓT ]/4− Σ̇[ΓΓΓT ]/(2kB)).

Hence, we have

(4.36) ⟨Υ⟩ =
∑
i

[
4γi

mi

+
1

kBTγi

(
2mi⟨Fiv̇i⟩ − ⟨F 2

i ⟩ − γ2i ⟨v2i ⟩
)]
.

Multiplying (4.2) by Fi on each side and taking the ensemble average gives

(4.37) mi⟨Fiv̇i⟩ = ⟨F 2
i ⟩ − γi⟨Fivi⟩.

Multiplying (4.2) by vi on each side and taking the ensemble average gives

(4.38) mi⟨viv̇i⟩ = ⟨Fivi⟩ − γi⟨v2i ⟩.

Note that in the NESS, the average kinetic energy of the system should be invariant with

time, d
∑

imi⟨v2i ⟩/dt = 0, rendering
∑

imi⟨viv̇i⟩ = 0. Therefore (4.36) becomes

(4.39) ⟨Υ⟩ =
∑
i

(
⟨F 2

i ⟩
kBTγi

− 3
γi⟨v2i ⟩
kBT

+ 4
γi
mi

)
.

The entropy production and dynamical activity together set the lower bound for the

precision of current precision, termed thermodynamic uncertainty relation, in a form as
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[124, 126]

(4.40) var(j)
⟨j⟩2

≥ 2

4⟨Υ⟩+ 9⟨Σ̇⟩/kB
.

Note that here and in the main text, we do not include T in the denominator on the

right-hand side of the TUR equations as in the original work [124, 126]. This is because

we use the instantaneous current j =
∑

i qivi whose mean and variance do not grow with

time. However, in the original work [124, 126], the integrated current JT =
∫
T j(t)dt =∑

i qi∆xi(T ) is used. Thus, ⟨JT ⟩2 = T 2⟨j⟩2 ∝ T 2 and var(JT ) = T var(j) ∝ T . Thus,

the denominator on the right-hand side of (4.40) needs to be multiplied by T to represent

the integrated value. A thorough discussion of j and JT can be found in Ref. [122].

The original underdamped TUR [124] contains an extra term

(4.41) Ω = 2

〈(∑
i

vi∂viP
ss(rrr,vvv)/P ss(rrr,vvv)

)2〉
− 2N2,

where N is the number of particle and P (rrr,vvv) is the probability of finding the particle at

the position rrr with a velocity vvv. The superscript ss stands for steady state. As we only

consider the dynamics along x-direction, we have rrr → x and vvv → vx. In the steady state of

our system, the particles visit every x with an equal probability. The velocity distribution

is Gaussian-type with a standard deviation close to the thermal velocity,
√
kBT/m (see
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Figure 4.15). Therefore,

Ω = 2

〈(
Nv∂ve

− (v−v̄)2

2σ2
v /e

− (v−v̄)2

2σ2
v

)2〉
− 2N2

= 2N2⟨[v(v − v̄)/σ2
v ]

2⟩ − 2N2

= 0.

(4.42)

That is why we do not have this term in the main text.

  

Figure 4.15. The steady state velocity distribution, P ss(v), of large (left)
and small NPs (right) at different field strengths. Both are close to
Gaussian-type. The black bar in each graph marks the thermal velocity,√
kBT/m.
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4.6.3. Overdamped TUR in the underdamped dynamics

We derive a simple criterion to estimate if the overdamped TUR is applicable in the

underdamped dynamics. From (4.2), the probability distribution function of particle

velocity satisfies the following Fokker-Planck equation

(4.43) m
∂P (v, t)

∂t
= − ∂

∂v

[
(−∇U + Fext − γv)P (v, t)

]
+ γkBT

∂2

∂v2
P (v, t).

For simplicity, we have assumed the velocity can be decoupled from the position. Both

−∇U and Fext are functions of the field strength, E, but are independent of the velocity.

Hence, we can write −∇U + Fext as f(E), whose details are discussed in the diffusion

model in the main text. As in the steady state, ∂P/∂t = 0, we solve (4.43) and obtain

(4.44) P ss(v) =
1√

2πkBT/m
exp

[
− m(v − f(E)/γ)2

2kBT

]
.

This gives

(4.45) ⟨v⟩ = f(E)

γ
,

(4.46) var(v) = kBT

m
.

The Gaussian form of (4.44) as well as (4.46) are consistent with Figure 4.15. The variance

of the velocity equals the strength of the thermal motion, as a result of the thermal noise

being the only stochastic source of the dynamics. Thus, the EP rate ((4.11)) becomes

(4.47) ⟨Σ̇⟩ = Nγ

T
[⟨v2⟩ − var(v)] = Nγ⟨v⟩2

T
.
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Also, since j =
∑

i qivi, we have

(4.48) var(j)
⟨j⟩2

=
var(v)
N⟨v⟩2

.

Combining (4.47) and (4.48), we can evaluate the product of the current precision and

the EP rate as

(4.49) var(j)
⟨j⟩2

⟨Σ̇⟩ = var(v)
⟨v⟩2

γ⟨v⟩2

T
=
γkB
m

.

The overdamped TUR [126] states that

(4.50) var(j)
⟨j⟩2

≥ 2kB

⟨Σ̇⟩
.

This means

(4.51) m

γ
<

1

2
.

We know that when the ratio of inertia and the damping strength is much smaller than

1, m/γ ≪ 1, the underdamped Langevin dynamics reduce to the overdamped dynam-

ics. Here, (4.51) shows that m/γ can also serve as a criterion for when we can use the

overdamped TUR in the underdamped dynamics. However, the assumption made in the

derivation that the position and the velocity can be decoupled holds only in homogeneous

systems or when the velocity is fast enough to average out the spatial inhomogeneity.

Thus, (4.51) is not rigorous but a rough estimation. Also as a result, in our system,

(4.51) is more precise at strong fields than at weak fields.
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4.6.4. Table of simulation parameters

Table 4.1. Simulation parameters in this study.

Parameter Value

Rlarge particle 5 nm

Rsmall particle 1 nm

qlarge particle −80 e

qsmall particle +10 e

ϵr 80

η0 0.89 mPa · s

ρparticle 10 g/cm3

ε (energy unit) 1.56 kJ/mol

σ (length unit) 1 nm

m (mass unit) 2× 10−22 kg

τ (time unit) 2.85× 10−10s
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4.6.5. Temperature hysteresis curves

Figure 4.16. The temperature hysteresis curves of the lattice constant under
zero external electric field. The red dots are the equilibrium lattice constant
values at different temperatures in the NPT simulations, which are the same
as the data in Figure 2A in the main text. After equilibrating the crystal at
T = 300K, we increase the heat bath temperature to 338K at a constant
rate (dT/dt = 2.67×107 K/s) and the blue curve shows the lattice constant.
The green curve shows the lattice constant of the opposite path. We do not
consider the freezing of water here.
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4.6.6. Equilibration of the system
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Figure 4.17. The lattice constant parallel to the electric field over time
since the field is applied.
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4.6.7. Radial distribution functions in three states

  

ionic

superionic

laning

Figure 4.18. The radial distribution functions between small and small
NPs in ionic, superionic, and laning states. Here, r0 is the position of the
first peak in each function.
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4.6.8. Total acting force under different integration timesteps

Figure 4.19. The ensemble average of the total acting force,
∑

i⟨F 2
i ⟩, of

large (left) and small (right) NPs under different integration timesteps.
At strong fields, a large timestep (∆t = 0.0005τ would result in strong
overlaps between particles. Hence, abrupt increases in

∑
i⟨F 2

i ⟩ occur, which
are carried into the calculations of the dynamical activities. This sampling
problem can be mitigated by using a smaller timestep to reduce the overlaps
between particles.
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CHAPTER 5

Summary and outlooks

5.1. Summary of the dissertation

This dissertation employed a combination of theoretical analysis and simulations to

investigate the newly discovered superionic phase in charged colloidal assemblies. The

research encompassed the entire timeline, starting from the initial observation of the

superionic phase to exploring phase transitions and dynamic behaviors under the influence

of an electric field. Our usage of a simple coarse-grained (CG) model with dimensionless

parameters ensures the generality of our findings.

Chapter 2 focused on a binary colloidal system, where large and small particles with

opposite charges assemble into crystals through electrostatic interactions. By increasing

the temperature, we observed a transition of the small particles from localized positions in

the crystal’s interstices to a delocalized and roaming state, while still effectively binding

the large particles together. This entropy-driven sublattice melting exhibited a first-order

transition at specific number ratios, which we characterized using Wyckoff positions.

In Chapter 3, we extended our research from isolated crystals to a mixture of crystals

and solution, accounting for material exchange. We discovered that, in addition to tem-

perature, an increase in the concentration of small particles in the solution could induce

sublattice melting and an ionic-to-superionic transition. This transition was accompa-

nied by lattice expansion and the incorporation of more small particles into the crystal.
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Theoretical analysis revealed that the Madelung constant summation method accurately

calculated the electrostatic potential energy in the ionic state, while the Wigner-Seitz

cell approach described the superionic state. The phonon model captured the hardcore

repulsion. Our free energy calculations indicated that the ionic-to-superionic transition

was driven by enthalpy when the material exchange was allowed.

The results presented in Chapters 2 and 3 demonstrated the versatile nature of the

superionic transition. On one hand, predicting transition behaviors is challenging due

to the sensitivity to environmental conditions. On the other hand, the complexity of

the transition opens up opportunities for engineering applications once a comprehensive

understanding is achieved.

Chapter 4 explored the behaviors of charged colloidal crystals under an electric field.

As the field strength increased, multiple phase transitions occurred, progressing from ionic

to superionic states and eventually forming laning states, which facilitated faster material

transport. In the superionic state, the mobility of charged colloidal particles was com-

parable to that of ions in water, indicating the potential for charged colloidal crystals to

serve as superionic conductors and as models for studying superionic conduction prop-

erties. At the transport limit, the system exhibited precise charge transport described

by Arrhenius’s law, while the dissipation and system’s charge currents demonstrated a

tradeoff relationship with increasing field strength. We established that, in the transport

limit, the product of dissipation and current precision converged to the system’s damp-

ing degree. These findings provide theoretical insights for enhancing energy-conversion

efficiency in future applications.
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Overall, our research expands the realm of nanoparticle engineering and demonstrates

the utility of colloidal systems for unraveling mechanisms in more fundamental systems.

5.2. Outlook for future work

In our research, we have primarily focused on the study of assemblies composed of

simple colloidal particles, which we have modeled as isotropic spheres. However, it is worth

noting that our system can readily be extended to investigate more complex systems.

Furthermore, we firmly believe that our observations and conclusions hold relevance across

various other systems. As a result, it is crucial to continue our research in diverse future

directions to expand our understanding of these phenomena.

One intriguing avenue for future exploration is the investigation of the superionic

phase in assemblies of colloidal particles featuring interacting patchy domains. By incor-

porating these domains, we can introduce the concept of valency and directional bonding

into the system. Through controlled adjustments of the interaction strength, we can

effectively manipulate the reversible condensation and release of the patchy particles.

It is anticipated that in the ionic state, the assembly will assume a distinct structure

due to the presence of static directional bondings. However, in the superionic state, the

structure may become more symmetric as the bondings become dynamic. Consequently,

these structural transformations have the potential to enable the realization of specific

mechanical functions through the assembly’s morphological changes.

Expanding the study of patchy particle systems to include macromolecule systems

presents another promising direction. For instance, proteins exhibit interactions through

their surface domains, which possess positive or negative charges and varying degrees
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of hydrophilicity. Such interactions allow proteins to either self-aggregate or coassem-

ble with other soft matter components. A particularly valuable goal is to identify the

localized-to-delocalized transition within protein aggregates, which could revolutionize

protein separation and purification techniques. However, simulating macromolecules or

bio-molecules computationally is inherently expensive. To tackle this challenge, we have

developed a numerical method based on the spherical harmonic expansion. This method,

detailed in Appendix A of the dissertation, enables fast simulations of macromolecule

systems, offering a practical solution to computational limitations.

Lastly, it is expected that field-induced superionicity will find application and exist

in various other systems. One such example is iontronics, where ions navigate intricate

networks formed by soft matter like polymers, functioning as carriers of signals [25]. As

the intensity of the applied electric field increases, the mobility of ions may undergo a

significant boost, indicating a superionic transition. Additionally, the polymer network,

being more flexible than colloidal crystals, can exhibit more intricate structural changes.

The insights gained from our research, along with the methodologies employed, such as

osmotic ensemble simulations, diffusion models, and dissipation calculations, can lay a

solid foundation for exploring the physics of such complex systems. By applying sim-

ilar approaches, we can delve into the behavior of these intricate systems and uncover

their distinct characteristics. This exploration holds great potential for developing novel

materials with enhanced functionalities and a wide range of applications.

In conclusion, our research on assemblies of simple colloidal particles has served as a

foundation for further exploration in a multitude of directions. By delving into the study

of patchy particle systems, extending our investigations to macromolecule systems, and
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probing the possibilities of field-induced superionicity, we can advance our understanding

of complex systems and their practical applications. These future research directions will

undoubtedly contribute to the broader field of materials science, paving the way for new

technological advancements and fostering innovative solutions to current challenges.
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APPENDIX A

Spherical Harmonic Expansion Method for Fast Computation

When modeling a N -body system where each body is made of M elementary particles,

to evaluate the interaction between two bodies, we need to go through and sum up all

the interactions of particle-particle pair. In such cases, the computational time is in the

order of O(M2). Although this time can be reduced by the usage of cutoff distance,

neighbor list, and other acceleration methods, it is still computationally expensive when

M is large. For example, a protein usually contains tens of thousands of atoms and to

efficiently model a large-scale protein system is still challenging.

A feasible way to increase the computational efficiency is to reduce M , which reduces

the degrees of freedom. This is actually the core idea of coarse-grained simulations. For

instance, MARTINI force field [144, 145] wraps four heavy atoms into one bead. The

higher degree of coarse-graining methods may use one bead to represent hundreds of

atoms such that the number of representative beads of a protein is reduced to several

hundreds. Methods with an even coarser resolution, which are called ultra-coarse-grained

(UCG) methods [146, 147, 148], can sometimes represent the whole molecule/object by

one or a few beads. The UCG methods require the identification of important metastable

states of the molecule. For example, the 2-butene has two important metastable states,

cis- and trans-, and a hairpin peptide has ”open” and ”close” states. The interaction

energy between these states are pre-calculated, which can be assisted by machine learning

methods. Each UCG bead is assigned a state and can switch states during simulations.
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Via these implementations, the granularity of the model has been greatly reduced. In

addition, the particle-wise configuration space is simplified and represented by a few

important states. However, important atomistic details could be omitted in the coarse-

graining process. Efficient ultra coarse models are often knowledge-based, relying on a

priori information to parameterize models thus hindering general predictive capability.

Therefore, CG models with a high granularity that preserves atomistic details are

demanded. A powerful numerical method to fast-compute the summation over all the

atom pairs is the multipole expansion. In the multipole expansion, the discrete summation

is approximated in the continuous form and then expanded into a multipole series. As

higher-order terms gradually decay and contribute less, we can properly truncate the

infinite series and keep the leading terms. By doing this, we have turned the number of

terms in the summation from O(M2) to only a few.

In the following of this chapter, we will introduce the multipole expansion method

using the spherical harmonics, which is mostly based on the previous works of Baddour

[149] and Girard [150], and extend it to complex biological molecule systems. In Section

A.1, we show how the interaction between two complex objects can be written as an

integral in the continuous representation and can be transformed into multiplication in

the Fourier space. In Section A.2, we review the Fourier transform, the spherical harmonic

functions, and their connection. In Section A.3, we discuss the numerical implementation

of the spherical harmonic expansion method.
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A.1. Field representation of pairwise potentials

Consider a system of macromolecules interacting through some particular potentials

that we are interested in, for example, a screened Yukawa potential. For molecule i, we

denote the position of its center of mass by rrri and its orientation by R̂RRi. Let χ(r) be the

interaction potential, which is isotropic and hence only relies on the distance between two

molecules. In this method, χ(r) must possess a Fourier transform; otherwise, it has no

restriction.

Taking the case of charged particles interacting through a Yukawa potential for an

example, we have χ(r) = exp(−κr)/r. Let ρi(rrr, R̂RRi) be the charge density distribution

of molecule i in its own reference system (i.e. put rrri on the origin). For a point in the

reference system of molecule i, rrr, and a point in the reference system of molecule j, rrr′ ,

their absolute distance is given as

(A.1) (rrr + rrri)− (rrr
′
+ rrrj) = rrr − rrr

′ − (rrrj − rrri) = rrr − rrr
′ − rrrij,

and thus, the interaction potential between molecule i and j can be written as

(A.2) uij(rrri, R̂RRi, rrrj, R̂RRj) =

∫∫
V,V ′

ρi(rrr, R̂RRi)χ(|rrrij − rrr − (−rrr′)|)ρj(rrr
′
, R̂RRj)drrrdrrr

′
.
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Notice that if we denote ρ(rrr) ≡ ρ(−rrr), Eqn. (A.2) is in fact the convolution of ρi, χ, and

ρj
∗:

(A.3) uij(rrri, R̂RRi, rrrj, R̂RRj) = (ρi ∗ ∗ ∗ χ ∗ ∗ ∗ ρj)(rrrij).

Here, ∗ ∗ ∗ stands for the convolution operator, which is written as ∗ for short hereafter.

In Fourier space, the convolution becomes the multiplication of the Fourier transforms of

three functions:

(A.4) F{uij(rrri, R̂RRi, rrrj, R̂RRj)} = F{ρi}F{χ}F{ρj},

where F{...} stands for the Fourier transform. Therefore, it is more numerically efficient

to compute the interaction potential by first transforming the functions into Fourier space,

then calculating the multiplication, and finally transforming back to the real space.

A.2. Properties of three-dimensional Fourier transforms in spherical polar

coordinates

A.2.1. Three-dimensional Fourier transform

The three-dimensional (3D) Fourier transform of f(rrr) = f(x, y, z) is defined as

(A.5) F (ωωω) =

∫
V

f(rrr)e−iωωω·rrrdrrr.

∗The convolution of three functions is:

(f ∗ g ∗ h)(x) =
∫∫

V×V

f(y)g(z)h(x− y − z)dydz



176

By doing this, the function is converted from the spatial space, rrr = (r, ψr, θr), to the

frequency space, ωωω = (ω, ψω, θω). Similarly, the inverse Fourier transform is given as

(A.6) f(rrr) =
1

(2π)3

∫
V

F (ωωω)eiωωω·rrrdωωω.

The Fourier kernel, e−iωωω·rrr, can be expanded into spherical harmonics as follows:

(A.7) e−iωωω·rrr = 4π
∞∑
l=0

k=l∑
k=−l

(−i)ljl(ωr)Y k
l (ψr, θr)Y

k
l (ψω, θω).

Here, Y k
l are spherical harmonics and jl is the l-order spherical Bessel function which will

be introduced in the later sections. As rrr and ωωω are equivalent in Eqn. (A.7), they are

interchangable. Thus, the inverse Fourier kernel can be expanded as:

(A.8) eiωωω·rrr = 4π
∞∑
l=0

k=l∑
k=−l

(i)ljl(ωr)Y k
l (ψω, θω)Y

k
l (ψr, θr).

A.2.2. Spherical harmonics

Spherical harmonics are the solution to the angular portion of Laplace’s equation:

(A.9) 1

Y

1

sin θ
∂

∂θ

(
sin θ∂Y

∂θ

)
+

1

Y

1

sin2 θ

∂2Y

∂ψ2
= −l(l + 1),

and possess the expression

(A.10) Y m
l (ψ, θ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cosψ)eimθ.

Here, Y m
l is called a spherical harmonic function of degree l and order m, Pm

l is an

associated Legendre function, 0 ≤ ψ ≤ π represents the colatitude, and 0 ≤ θ ≤ 2π
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represents the longitude. The degree l = 0, 1, 2, ... must be a non-negative integer and

the order m can be any integer within [−l, l]. The orthogonality relationship between

spherical harmonics is given by

(A.11)
∫ 2π

0

∫ π

0

Y m
l Y m′

l′
sinψdψdθ = δll′δmm′ ,

where δij is the Kronecker function and the overbar indicates the complex conjugate.

A.2.3. Bessel functions and spherical Hankel transform

Bessel functions are canonical solutions of Bessel’s differential equation

(A.12) x2
d2y

dx2 + x
dy
dx + (x2 − α2)y = 0.

Bessel functions of the first kind [151], Jα(x), has the expression

(A.13) Jα(x) =
∞∑

m=0

(−1)m

m!Γ(m+ α + 1)

(x
2

)2m+α

,

where Γ is the Gamma function. The spherical Bessel functions are defined from the

half-integer order Bessel functions

(A.14) jn(x) =

√
π

2x
Jn+1/2(x).

The spherical Bessel functions with different orders satisfy an orthogonality relationship.
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The spherical Hankel transform of order n can be defined from the nth-order spherical

Bessel function as

(A.15) F̂n(ω) = Sn{f(r)} =

∫ ∞

0

f(r)jn(ωr)r
2dr.

The inverse Hankel transform is given by

(A.16) f(r) =
2

π

∫ ∞

0

F̂n(ω)jn(ωr)ω
2dω.

Next, we will show how the Hankel transforms and the Fourier transforms are related.

A.2.4. Connection between Fourier transform and spherical harmonics

Because of the orthogonality of spherical harmonics, any well-behaved function can be

expanded in terms of spherical harmonics in the following form

(A.17) f(rrr) = f(r, ψr, θr) =
∑
L

fk
l (r)Y

k
l (ψr, θr),

where we have used

(A.18)
∑
L

=
∞∑
l=0

k=l∑
k=−l

for simplicity. The expansion coefficient is given by

(A.19) fk
l (r) =

∫ 2π

0

∫ π

0

f(r, ψr, θr)Y k
l (ψr, θr)r

2 sinψrdψrdθr.
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Similarly, the Fourier transform of f(rrr) can be expanded into a spherical harmonic

series

(A.20) F (ωωω) =
∑
L

F k
l (ω)Y

k
l (ψω, θω).

Plugging the spherical harmonic expansion of the Fourier kernel, Eqn. (A.7), and the

spherical harmonic expansion of f(rrr), Eqn. (A.10), into the Fourier transform equation,

Eqn. (A.5), we have

F (ωωω) =

∫ ∞

0

dr
∫ 2π

0

∫ π

0

∑
L

fk
l (r)Y

k
l (ψr, θr)

× 4π
∑
L
′

(−i)l
′

jl′ (ωr)Y
k′

l′
(ψr, θr)Y

k
′

l′
(ψω, θω)r

2 sinψrdψrdθr

=
∑
L′

∑
L

4π(−i)l
′
∫ ∞

0

fk
l (r)jl′ (ωr)r

2dr

×
∫ 2π

0

∫ π

0

Y k
l (ψr, θr)Y k′

l′
(ψr, θr) sinψrdψrdθr × Y k

′

l′
(ψω, θω)

=
∑
L′

∑
L

4π(−i)l
′
∫ ∞

0

fk
l (r)jl′ (ωr)r

2drδll′δkk′Y k
′

l′
(ψω, θω)

=
∑
L

4π(−i)l
{∫ ∞

0

fk
l (r)jl(ωr)r

2dr
}
Y k
l (ψω, θω).

(A.21)

Comparing Eqn. (A.21) to Eqn. (A.20), it is seen that

(A.22) F k
l (ω) = 4π(−i)l

{∫ ∞

0

fk
l (r)jl(ωr)r

2dr
}

= 4π(−i)lSl{fk
l (r)}.

Therefore, the spherical harmonic expansion coefficients of the Fourier transform of a

function, {F k
l }, are the Hankel transform of the spherical harmonic expansion coefficients
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of the original function, {fk
l }. In other words, and more importantly, in the representation

of spherical harmonic expansion, the Fourier transform can be realized by simply replacing

the (l, k)th coefficient of the spherical harmonic series by its l-th order Hankel transform.

For the inverse Fourier transform, following the same derivation, we have

f(rrr) =
1

(2π)3

∫ ∞

0

dω
∫ 2π

0

∫ π

0

∑
L

F k
l (r)Y

k
l (ψω, θω)

× 4π
∑
L′

(i)l
′

jl′ (ωr)Y
k′

l′
(ψω, θω)Y

k
′

l′
(ψr, θr)ω

2 sinψωdψωdθω

=
∑
L′

∑
L

(i)l
′

2π2

∫ ∞

0

F k
l (r)jl′ (ωr)ω

2drδll′δkk′Y k
′

l′
(ψr, θr)

=
∑
L

(i)l

4π

{
2

π

∫ ∞

0

F k
l (r)jl(ωr)ω

2dω
}
Y k
l (ψr, θr),

(A.23)

which gives

(A.24) fk
l (r) =

(i)l
′

4π
Sl{F k

l (r)}.

A more straightforward way to obtain the above equation is to do the inverse Hankel

transform of Eqn. (A.22).

A.2.5. Multiplication and Slater coefficients

Next, we discuss the multiplication between functions. Consider two functions, f(rrr) and

g(rrr), where f(rrr) =
∑

L f
k
l (r)Y

k
l and similarly for g. Their product, h(rrr) = f(rrr)g(rrr), can

be also expanded into a spherical harmonic series, h(rrr) =
∑

L h
k
l (r)Y

k
l . We aim to find

out how hkl relates to fk
l and gkl . This can be accomplished by transforming h(rrr) into the
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Fourier space:

H(ωωω) =

∫
V

f(rrr)g(rrr)e−iωωω·rrrdrrr

=

∫ ∞

0

∫ 2π

0

∫ π

0

∑
L′

fk
′

l′
(r)Y k

′

l′
(ψr, θr)

∑
L′′

gk
′′

l
′′ (r)Y k

′′

l
′′ (ψr, θr)

× 4π
∑
L

(−i)ljl(ωr)Y k
l (ψr, θr)Y

k
l (ψω, θω)r

2 sinψrdrdψrdθr,

(A.25)

where the angular part (ψr, θr) is the integral:

(A.26)
∫ 2π

0

∫ π

0

Y k
′

l′
(ψr, θr)Y

k
′′

l′′
(ψr, θr)Y k

l (ψr, θr) sinψrdψrdθr.

The expression of spherical harmonics, Eqn. (A.10), allows a further separation of the

angular variables, which results in an integral:

(A.27)
∫ 2π

0

ei(k
′
+k

′′−k)θrdθr = δ(k
′
+ k

′′ − k).

Therefore, we can replace k′′ by k − k
′ . Actually, the integrals in Eqn. (A.26) are known

as Slater coefficients which are defined as

(A.28) cl
′′

(l, k, l
′
, k

′
) ≡

∫ 2π

0

∫ π

0

Y k
′

l′
(ψr, θr)Y

k−k
′

l′′
(ψr, θr)Y k

l (ψr, θr) sinψrdψrdθr

and are nonzero only for |l − l
′ | ≤ l

′′ ≤ l + l
′ . Using Slater coefficients, Eqn. (A.25)

becomes

H(ωωω) =
∑
L

4π(−i)l
{∫ ∞

0

∑
L
′

fk
′

l′
(r)

l+l
′∑

l
′′
=|l−l

′ |

gk−k
′

l′′
(r)cl

′′

(l, k, l
′
, k

′
)jl(ωr)r

2dr
}
Y k
l (ψω, θω).

(A.29)
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As shown by Eqn. (A.21) that

(A.30) H(ωωω) =
∑
L

4π(−i)l
{∫ ∞

0

hkl (r)jl(ωr)r
2dr
}
Y k
l (ψω, θω),

we obtain

(A.31) hkl (r) =
∑
L′

fk
′

l′
(r)

l+l
′∑

l′′=|l−l′ |

cl
′′

(l, k, l
′
, k

′
)gk−k

′

l′′
(r).

As Slater coefficients are precomputed and tabulated, it is convenient for us to use the

existing table of Slater coefficients in our computation.

A.2.6. Spatial shift

The spatial shift of a function f(rrr) respect to a reference point rrr0, which is written as

f(rrr − rrr0), possesses a Fourier transform

F{f(rrr − rrr0)} =

∫
V

f(rrr − rrr0)e
−iωωω·rrrdrrr.

=e−iωωω·rrr0
∫
V

f(rrr − rrr0)e
−iωωω·(rrr−rrr0)d(rrr − rrr0)

=e−iωωω·rrr0F{f(rrr)}.

(A.32)

Thus, the spatially shifted function can be defined as

(A.33) f(rrr − rrr0) = F−1{e−iωωω·rrr0F (ωωω)}.
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Using the spherical harmonic series of F (ωωω) (Eqn. (A.21)), e−iωωω·rrr0 (Eqn. (A.7) with r

replaced by r0), and eiωωω·rrr (Eqn. (A.8)), Eqn. (A.33) becomes

f(rrr − rrr0) =
1

(2π)3

∫ ∞

0

∫ 2π

0

∫ π

0

∑
L′′

4π(−i)l
′′
{∫ ∞

0

fk
′′

l′′
(u)jl′′ (ωu)u

2du
}
Y k

′′

l′′
(ψω, θω)

× 4π
∑
L′

(−i)l
′

jl′ (ωr0)Y
k′

l′
(ψr0 , θr0)Y

k
′

l′
(ψω, θω)

× 4π
∑
L

(i)ljl(ωr)Y k
l (ψω, θω)Y

k
l (ψr, θr)ω

2 sinψωdωdψωdθω.

(A.34)

The integral above can be separated into the angular part (ψω, θω) and the radial part ω.

The angular part yields the aforementioned Slater coefficients. The radial part featuring

the integral of a triple product of spherical Bessel functions can be called the shift operator,

which is defined as

(A.35) Sl,l
′

l′′
(u, r, r0) =

∫ ∞

0

jl′′ (ωu)jl′ (ωr0)jl(ωr)ω
2dω.

Hence, the spatially shifted function becomes

f(rrr − rrr0) =
∑
L

8(i)lY k
l (ψr, θr)

∑
L′

(−i)l
′

Y k′

l′
(ψr0 , θr0)

×
l+l

′∑
l′′=|l−l′ |

(−i)l
′′

cl
′′

(l, k, l
′
, k

′
)

∫ ∞

0

fk−k
′

l′′
(u)Sl,l

′

l′′
(u, r, r0)u

2du.
(A.36)

The properties of the shift operator are quite complicated and will not be discussed here.

With the shift operator, the calculation of convolution seems to be very cumbersome.

Next, however, we will show when transforming the convolution into the Fourier space,
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the shift operator disappears and the result only includes the spherical harmonic expansion

coefficients of the Fourier transform of each function.

A.2.7. Convolution

The 3D convolution of two functions is defined as

(A.37) h(rrr) = f(rrr) ∗ g(rrr) =
∫
V

g(rrr0)f(rrr − rrr0)drrr0.

Here, we use the spherical harmonic expansion to prove the below relationship:

(A.38) H(ωωω) = F (ωωω)G(ωωω).

By plugging the spherical harmonic series of g(rrr0) and f(rrr − rrr0) into Eqn. (A.37), it

becomes

h(rrr) =

∫ ∞

0

∫ 2π

0

∫ π

0

∑
L′′′

gk
′′′

l′′′
(r0)Y

k
′′′

l′′′
(ψr0 , θr0)

∑
L

8(i)lY k
l (ψr, θr)

×
∑
L′

(−i)l
′

Y k′

l′
(ψr0 , θr0)

l+l
′∑

l′′=|l−l′ |

(−i)l
′′

cl
′′

(l, k, l
′
, k

′
)

×
∫ ∞

0

fk−k
′

l′′
(u)

∫ ∞

0

jl′′ (ωu)jl′ (ωr0)jl(ωr)ω
2dωu2dur20 sinψr0dψr0dθr0dr0.

(A.39)

The integral of the angular variables (ψr0 , θr0) is

(A.40)
∫ 2π

0

∫ π

0

Y k
′′′

l′′′
(ψr0 , θr0)Y

k′

l′
(ψr0 , θr0) sinψr0dψr0dθr0 = δl′ l′′′δk′k′′′ .
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Thus, Eqn. (A.39) can be simplified as

h(rrr) =

∫ ∞

0

∑
L

8(i)lY k
l (ψr, θr)

∑
L′

(−i)l
′

gk
′

l
′ (r0)

l+l
′∑

l′′=|l−l′ |

(−i)l
′′

cl
′′

(l, k, l
′
, k

′
)

×
∫ ∞

0

fk−k
′

l′′
(u)

∫ ∞

0

jl′′ (ωu)jl′ (ωr0)jl(ωr)ω
2dωu2dur20dr0.

(A.41)

Comparing Eqn. (A.41) to the Fourier transform of h(rrr):

(A.42) h(rrr) =
∑
L

(i)l

4π

{
2

π

∫ ∞

0

Hk
l (r)jl(ωr)ω

2dω
}
Y k
l (ψr, θr),

we have

Hk
l (r) =

∫ ∞

0

(4π)2
∑
L′

(−i)l
′

gk
′

l′
(r0)

l+l
′∑

l′′=|l−l′ |

(−i)l
′′

cl
′′

(l, k, l
′
, k

′
)

×
∫ ∞

0

fk−k
′

l′′
(u)jl′′ (ωu)jl′ (ωr0)u

2dur20dr0

=
∑
L′

l+l
′∑

l′′=|l−l′ |

cl
′′

(l, k, l
′
, k

′
)

{∫ ∞

0

4π(−i)l
′

gk
′

l′
(r0)jl′ (ωr0)r

2
0dr0

}

×

{
4π(−i)l

′′
∫ ∞

0

fk−k
′

l′′
(u)jl′′ (ωu)u

2du
}

=
∑
L′

l+l
′∑

l′′=|l−l′ |

cl
′′

(l, k, l
′
, k

′
)Gk

′

l′
(ω)F k−k

′

l′′
(ω).

(A.43)

Note that the final equation in Eqn. (A.43) implies that H(ωωω) is the product of F (ωωω) and

G(ωωω). Therefore, we have proven Eqn. (A.38).
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A.2.8. Quaternions and spatial rotation

Now, we start to discuss the rotation of the object, as the object in any orientation can be

obtained via a rotation from the reference orientation. In our method, we use quaternions

to describe rotation. Quaternions are generally represented in the form

(A.44) qqq = qw + qxiii+ qyjjj + qzkkk,

where qw, qx, qy, and qz are real numbers; and 1, iii, jjj, and kkk are the basis vectors or

basis elements. In traditional Cartesian coordinates, the basis vectors are simply x̂xx, ŷyy,

and ẑzz. Hereafter, the quaternions discussed are all in the Cartesian coordinates and are

normalized, which means their norms are
√
q2w + q2x + q2y + q2z = 1.

Quaternions can be viewed as an extension of the two-dimensional complex plane to

the 3D space. Therefore, we refer to qw as the real part and qxiii+qyjjj+qzkkk as the imaginary

part. Similar to the imaginary axis in the complex plane, for quaternions we have

(A.45) iii2 = jjj2 = kkk2 = −1.

Also, we have

(A.46) iiijjj = kkk; jjjkkk = iii; kkkiii = jjj,

as rotating the y-axis about the x-axis by 90◦ yields the z-axis in the right-handed coor-

dinate system; similarly for other equations.

Given any two orientations, we denote their z-axes as zzz1 and zzz2, respectively. Let

uuu = zzz1×zzz2 and ϕ = arccos[zzz1 ·zzz2/(|zzz1||zzz2|)], where × and · are the cross product and the
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dot product between vectors, respectively. Then, zzz1-orientation can be transformed to zzz2-

orientation by rotating zzz1-orientation about uuu by ϕ. In the representation of quaternions,

this rotation is written as

(A.47) qqq−1zzz1qqq = zzz2,

where qqq−1 is the inverse of qqq. For unit quaternions, qqq−1 is the conjugate of qqq:

(A.48) qqq−1 = qw − (qxiii+ qyjjj + qzkkk).

It is proven [152] that

(A.49) qqq = ei
ϕ
2
(uxiii+uyjjj+uzkkk) = cos ϕ

2
+ sin ϕ

2
(uxiii+ uyjjj + uzkkk).

Therefore, to briefly summarize how to use quaternions to represent 3D rotations, we

first determine the rotation axis uuu and the rotation angle ϕ, then find the corresponding

quaternion via Eqn. (A.49), and obtain the coordinate of rotated object via Eqn. (A.47).

A.2.9. Rotation formulas for spherical harmonics and Wigner D-Matrix

A 3D rotation operator is defined as

(A.50) R̂(α, β, γ) = eiαẑzzeiβŷyyeiγẑzz,

where α, β, γ are Euler angles. The rotation operator can be understood as first rotating

about the z-axis by an angle γ, then rotating about the y-axis by β, and finally rotating

about the z-axis by α.
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Each spherical harmonic function is rotated when the rotation operator is exerted on

a function expanded into spherical harmonics. These rotated spherical harmonics can be

expanded again into spherical harmonics given by the following rotation formula:

(A.51) R̂(α, β, γ)Y m
l (ψ, θ) =

l∑
m

′
=−l

Dl
mm′ (α, β, γ)Y m

′

l (ψ, θ).

Here, Dl
mm′ (α, β, γ) is called Wigner D-matrix and defined as

(A.52) Dl
mm′ (α, β, γ) = eimαdl

mm′ (β)eim
′
γ,

where the rotations about the z-axis in the spherical polar coordinates are simply eimα

and eimγ . The Wigner’s small d-matrix, dl
mm′ (β), is defined as

dl
mm′ (β) =

√
(l +m)!(l −m)!(l +m′)!(l −m′)!

×
smax∑

s=smin

(−1)m−m
′
+s
(

cos β
2

)2l+m
′−m−2s( sin β

2

)m−m
′
+2s

(l +m′ − s)!(l −m− s)!(m−m′ + s)!
,

(A.53)

where the range of s covers the values which make the factorials non-negative, i.e., smin =

max(0,m′ −m) and smax = min(l +m
′
, l −m).

In the quaternion representation of rotations, Dl
mm′ (α, β, γ) is given as [153]:

(A.54)

Dmm′ =

√
(l +m)!(l −m)!

(l +m′)!(l −m′)!
|Ra|2l−2mRm+m

′

a Rm−m
′

b

∑
s

(−1)s
(

s

l +m′

)(
l − s−m

l −m′

)(
|Ra|
|Rb|

)2s

,

where Ra = qw + iqz and Rb = qy + iqx; the range of s is the same as the one mentioned

above. Using quaternions, it is more convenient for us to deal with the rotations without

evaluating trigonometric functions.
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A.3. Numerical implementation

With all the aforementioned mathematical tools, we can revisit Eqn. (A.2). We start

by evaluating each term on the r.h.s. of Eqn. (A.4), which all are required to possess a

Fourier transform. We also require that the object is rigid so that the spherical harmonics

are time-invariant.

A.3.1. Density function

A convenient choice of the continuous density function is the Gaussian function. The

density function of an atom located at rrr0 can be written as a Gaussian function shifted

in space:

(A.55) f(rrr − rrr0) =

(
1√
2πσ

)3

exp
[
− (rrr − rrr0)

2

2σ2

]
.

Here, σ is the width of the Gaussian function and is a tunable parameter. In practice, σ

should depend on the radius of the atom.

Note that the 3D Fourier transform of a Gaussian function is given by

(A.56) F{f(rrr)} = F (ωωω) =

∫
drrr
(

1√
2πσ

)3

e−
rrr2

2σ2 e−iωωω·rrr = e−
ω2σ2

2 .

Since Y 0
0 = 1/

√
4π is the only constant term and the only spherically symmetric term,

the spherical harmonic expansion of F (ωωω) contains only the first term:

(A.57) F (ωωω) =
√
4πe−

ω2σ2

2 Y 0
0 (ψω, θω).
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Thus, the Fourier transform of the shifted Gaussian function can be expanded into spher-

ical harmonics as

(A.58) F{f(rrr− rrr0)} = e−iωωω·rrr0F (ωωω) =
∑
L

{
4π(−i)ljl(ωr)Y k

l (ψr0 , θr0)e
−ω2σ2

2

}
Y k
l (ψω, θω),

where inside the bracket {...} are the expansion coefficients.

For an object with an orientation R̂1, its density function in the reciprocal space is

given by the sum of density functions of all its atoms

ρ̃(ωωω, R̂1) =
∑
L

{∑
j

4π(−i)ljl(ωr)Y k
l (ψr1,j , θr1,j)e

−
ω2σ2

1,j
2

} l∑
m′=−l

Dl
kk′

(R̂1)Y
k
l (ψω, θω)

=
∑
L

l∑
k
′
=−l

Dl
kk′

(R̂1)F
k
l (ω)Y

k
l (ψω, θω).

(A.59)

Here, ρ̃ represents the Fourier transform of ρ; the subscript j goes through all the atoms

in the object; and σ1,j and rrr1,j are the Gaussian function width parameter and the atom

position in the referential frame of the object, respectively. The expansion coefficients,

F k
l (ω), can be precalculated from the atomic information and saved for later simulations.

For the geometrically inversed density function, ρ(rrr) = ρ(−rrr), its Fourier transform is

(A.60) ρ̃(ωωω) =

∫ ∞

−∞
ρ(−rrr)e−iωωω·rrrdrrr = −

∫ −∞

∞
ρ(rrr

′
)e−i(−ωωω)·rrr′drrr′ = ρ̃(−ωωω),



191

where we have changed the variable by rrr
′
= −rrr. Since −ωωω = (ω, π − ψω, π + θω), the

spherical harmonics become

Y k
l (π − ψω, π + θω) ∼P k

l (cos(π − ψω))e
ik(π+θω)

=P k
l (− cosψω)(−1)keikθω

=(−1)l+kP k
l (cosψω)(−1)keikθω ,

(A.61)

where the third equation comes from the parity P k
l (x) = (−1)l+kP k

l (x). Therefore, we

have

(A.62) ρ̃(ωωω, R̂1) =
∑
L

l∑
k′=−l

(−1)lDl
kk′

(R̂1)F
k
l (ω)Y

k
l (ψω, θω).

When considering other density functions, such as the charge density function, we

simply multiply the density of each atom by its charge or partial charge as the weighting

factor.

A.3.2. Interaction potentials

A.3.2.1. Hardcore repulsion. The hardcore repulsion, or the volume excluding effect,

between two objects is considered by setting χ(rrr) = δ(rrr), whose Fourier transform is 1.

Thus, the only non-zero spherical harmonic expansion coefficient is G0
0(ω) =

√
4π.

A.3.2.2. Yukawa potential. The 1/r Coulomb potential does not have a Fourier trans-

form and thus cannot be used in our method. However, when salt exists in the so-

lution, the electrostatic interaction can be described by a screened Yukawa potential,
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χ(r) = exp(−κr)/r, which possesses a Fourier transform as

F{χ(ωωω)} =

∫
drrre

−κr

r
e−iωωω·rrr

=

∫ ∞

0

∫ 2π

0

∫ π

0

re−κre−iωr cos θ sin θdθdψ

=2π

∫ ∞

0

re−κr

(
e−iωr

−iωr
− eiωr

−iωr

)
dr

=
4π

κ2 + ω2
.

(A.63)

Similarly, the only non-zero spherical harmonic expansion coefficient is

(A.64) G0
0(ω) =

√
4π

4π

κ2 + ω2
=

8π3/2

κ2 + ω2

A.3.2.3. Other interactions. Other interactions existing in macromolecule systems,

such as interactions between hydrophilic and hydrophobic domains, can be approximately

simulated as coarse-grained potentials. Without losing generality, we can use a simple

Gaussian function to describe these interactions:

(A.65) χ(r) = ±a exp(−br2),

where + is for the repulsion, − is for the attraction, and a and b respectively represent

the interaction strength and the interaction range. Same as the density function, χ(r)

has a Fourier transform:

(A.66) F{χ(ωωω)} = ±a
(π
b

)3/2
e−

ω2

4b
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and possesses the only non-zero term in its spherical harmonic series

(A.67) F{χ(ωωω)} = ±
√
4πa

(π
b

)3/2
e−

ω2

4b Y 0
0 .

A.3.3. Full expression of the potential function

We can construct the full expression of the potential function using the spherical harmonic

expansion coefficients discussed above. We first calculate the product H(ωωω) = F{χ}F{ρj}.

As discussed above, most of the interaction potentials have spherical symmetry and hence

only possess the leading constant term in their spherical harmonic expansion. Thus, the

expansion coefficients of the product are given as

Hk
l (ω, R̂j) =

∑
L′

l+l
′∑

l′′=|l−l′ |

cl
′′

(l, k, l
′
, k

′
)Gk

′

l′
(ω)

l
′′∑

µj=−l′′

Dl
′′

k−k′ ,µj
(R̂j)(Fj)

k−k
′

l′′
(ω)

=G0
0(ω)

l∑
l′′=|l|

cl
′′

(l, k, 0, 0)
l
′′∑

µj=−l′′

Dl
′′

k−k′ ,µj
(R̂j)(Fj)

k−k
′

l′′
(ω)

=(−1)lχ̃(ω)
l∑

µj=−l

Dl
kµj

(R̂j)(Fj)
k
l (ω),

(A.68)

where we have used cl(l, k, 0, 0) = 1/
√
4π. Then, we convolute the result with ρi and

obtain

ũkl (ω, R̂i, R̂j) =χ̃(ω)
∑
L′

l+l
′∑

l′′=|l−l′ |

(−1)l
′′

cl
′′

(l, k, l
′
, k

′
)

×
l
′∑

µi=−l′

Dl
′

k′µi
(R̂i)(Fi)

k
′

l′
(ω)

l
′′∑

µj=−l′′

Dl
′′

k′′µj
(R̂j)(Fj)

k−k
′

l′′
(ω).

(A.69)
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Transforming ũ back to the real space yields u(rrrij, R̂i, R̂j):

u(rrrij, R̂i, R̂j) =
∑
L

∑
L′

l+l
′∑

l′′=|l−l′ |

(i)l

2π2

{∫ ∞

0

ũkl (ω, R̂i, R̂j)jl(ωr)ω
2dω

}
Y k
l (ψr, θr)

=
∑
L

∑
L′

l+l
′∑

l′′=|l−l′ |

l
′∑

µi=−l′

l
′′∑

µj=−l′′

(i)l(−1)l
′′

2π2

×

{∫ ∞

0

χ̃(ω)(Fi)
k
′

l′
(ω)(Fj)

k−k
′

l′′
(ω)jl(ωr)ω

2dω
}

× cl
′′

(l, k, l
′
, k

′
)Dl

′

k′µi
(R̂i)D

l
′′

k′′µj
(R̂j)Y

k
l (ψij, θij)

(A.70)

with the real space vector rrrij = (rij, ψij, θij). For the sake of simplicity and clearance, we

rewrite the indexes as k−k′
= k

′′ such that k = k
′
+k

′′ . Also, we have |l′−l′′ | ≤ l ≤ l
′
+l

′′ ,

since l, l′ , and l
′′ must form a triangle. All the indexes related to the ith object, those

with a superscript ′, are rewritten with a subscript i. All the indexes related to the jth

object, those with a superscript ′′, are rewritten with a subscript j. Eqn. (A.70) then

becomes

u(rrrij, R̂i, R̂j) =
∑
Li

∑
Lj

li+lj∑
l=|li−lj |

li∑
µi=−lj

lj∑
µj=−lj

(i)l(−1)lj

2π2

×

{∫ ∞

0

χ̃(ω)(Fi)
ki
li
(ω)(Fj)

kj
lj
(ω)jl(ωr)ω

2dω
}

× clj(l, ki + kj, li, ki)D
li
kiµi

(R̂i)D
lj
kjµj

(R̂j)Y
ki+kj
l (ψr, θr)

∣∣∣∣
r=rij

.

(A.71)
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For a macromolecule system consisting of diverse interactions, for example, hardcore

repulsion, Yukawa-type electrostatic interaction, and non-directional polar-polar attrac-

tion, the total expansion coefficient is given by

F
ki,kj
li,lj

(ω) =F atom
li,ki

(ω)F atom
lj ,kj

(ω) +
4π

κ2 + ω2
F charge
li,ki

(ω)F charge
lj ,kj

(ω)

− a

(
π

b

)3/2

e−
ω2

4b F polar
li,ki

(ω)F polar
lj ,kj

(ω) + ...,

(A.72)

where F atom
l,k (ω), F charge

l,k (ω), and F polar
l,k (ω) are the (l, k)th expansion coefficients of the

atomic density function, the charge density function, and the polar strength function.

The full expression of the potentia function is given as

(A.73)

u(rrrij, R̂i, R̂j) =
∑

li,ki,µi
li,ki,µi,l

(i)l(−1)lj

2π2
Fki,kj

l,li,lj
(rij)C

ki,kj
l,li,lj

Dli
kiµi

(R̂i)D
lj
kjµj

(R̂j)Y
ki+kj
l (ψr, θr)

∣∣∣∣
r=rij

,

where

(A.74)
∑

li,ki,µi
li,ki,µi,l

=
∞∑

li=0

li∑
ki=−li

∞∑
lj=0

lj∑
kj=−lj

li+lj∑
l=|li−lj |

li∑
µi=−lj

lj∑
µj=−lj

,

and

(A.75) Cki,kj
l,li,lj

= clj(l, ki + kj, li, ki),

and

(A.76) Fki,kj
l,li,lj

(rij) =

∫ ∞

0

F
ki,kj
li,lj

(ω)jl(ωr)ω
2dω.
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In the numerical implementation, we first precalculate the reciprocal density function

of each object via Eqn. (A.58) to obtain the expansion coefficients. For objects of the

same type, we only need to calculate the density function once. Then, we numerically

calculate F ki,kj
li,lj

(ω) and its Hankel transforms Fki,kj
l,li,lj

(rij), which is complied into tables

up to some cutoff order beforehand. Since Cki,kj
l,li,lj

can be pre-tabulated as well, the only

quantities needed to be computed in every step are {Dl
kµ(R̂)} given by Eqn. (A.54). The

potential is computed via Eqn. (A.73) up to the cutoff order. For example, cutting off

at li, lj = 3 results in a summation over several thousand terms. This number is tiny to

simulate macromolecules containing tens of thousands of atoms.

A.3.4. Force

Eqn. (A.73) is sufficient for calculating potential energies and sampling in Monte Carlo

simulations. For MD simulations, we also need forces and torques to evolve the position

and orientation of objects. Forces are given by the spatial derivative of u(rrrij, R̂i, R̂j) as

(A.77) FFF ij = −∂uij
∂rrrij

=

(
− ∂uij
∂xij

,−∂uij
∂yij

,−∂uij
∂zij

)

where rrrij = (xij, yij, zij). The spatial derivative will exert on F(rij) and Y
ki+kj
l (ψij, θij)

separately.

Since

(A.78) ∂jl(ωr)

∂r
=
ljl(ωr)

r
− ωjl+1(ωr),
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the derivatives of F are:

−
∂Fki,kj

l,li,lj
(rij)

∂αij

= −
∂Fki,kj

l,li,lj
(rij)

∂rij

∂rij
∂αij

=
αij

rij

∫ ∞

0

F
ki,kj
li,lj

(ω)

[
Ljl(ωr)

r
− ωjl+1(ωr)

]
ω2dω

∣∣∣∣
r=rij

(A.79)

where α = x, y, z. We can tabulate
∫∞
0
F (ω)jl+1(ωr)ω

3dω as well to accelerate the com-

putation.

The derivative of Y ki+kj
l (ψij, θij) is

(A.80) ∂Y k
l (ψ, θ)

∂α
=
∂Y k

l (ψ, θ)

∂ cosψ
∂ cosψ
∂α

+
∂Y k

l (ψ, θ)

∂θ

∂θ

∂α
.

We know that cosψ = z/r and hence

(A.81) ∂ cosψ
∂x

= −xz
r3
,
∂ cosψ
∂y

= −yz
r3
,
∂ cosψ
∂z

=
x2 + y2

r3
.

Also, since θ = arccos(x/
√
x2 + y2), we have

(A.82) ∂θ

∂x
=

|y|
x2 + y2

,
∂θ

∂y
=

x2

|y|(x2 + y2)
,
∂θ

∂z
= 0.

From Eqn. (A.10), the derivatives of spherical harmonics are given as

∂Y k
l (ψ, θ)

∂ cosψ =

√
(2l + 1)(l − k)!

4π(l + k)!
eikθ

P k
l (cosψ)
∂ cosψ

=

√
(2l + 1)(l − k)!

4π(l + k)!
eikθ

[
− (l + 1) cosψ

sin2 ψ
P k
l (cosψ)− (l −m+ 1)P k

l+1(cosψ)
]

(A.83)
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which is a linear combination of Y k
l (ψ, θ) and Y k

l+1(ψ, θ), and

∂Y k
l (ψ, θ)

∂θ
= ik

√
(2l + 1)(l − k)!

4π(l + k)!
P k
l (cosψ)eikθ = ikY k

l (ψ, θ).(A.84)

The force can be computed by the addition of all individual contributions.

A.3.5. Torque

Torques are computed via the derivatives with respect to infinitesimal rotations about

some set of axes, which here are the x, y, and z-axes. For the rotation about a vector

uuu = (ux, uy, uz), by writing uuu as a quaternion 0 + uxiii + uyjjj + uzkkk, the variation in a

quaternion caused by the rotation is given by

(A.85) dqqq
duuu =

1

2
uuu · qqq.

Thus, the derivatives of each component are

(A.86) dqw
duuu = −1

2
(uxqx + uyqy + uzqz),

(A.87) dqx
duuu =

1

2
(uxqw + uyqz − uzqy),

(A.88) dqy
duuu =

1

2
(uyqw + uzqx − uxqz),

(A.89) dqz
duuu =

1

2
(uzqw + uxqy − uyqx).
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Therefore, the derivative of uij with respect to a rotation about the axis uuuα, (α = x, y, z)

is given by the derivative of D(R̂) as

(A.90) ∂D

∂uuuα
=
∑
β

∂D

∂qβ

∂qβ
∂uuuα

,

where β = w, z, y, z is the individual component of qqq.
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